The Impact of Biology on the Treatment of Secondary AML

  • Ivana Gojo
  • Judith E. Karp
Part of the Cancer Treatment and Research book series (CTAR, volume 108)


Secondary, or therapy-related, acute myeloid leukemia (AML) developing after exposure to genotoxic agents accounts for approximately 10–20% of all AML cases. The prototype “induced AML” was described almost half a century ago in the setting of environmental exposures to DNA-damaging toxins including benzene, organic solvents, arsenicals and ionizing radiation ([Golomb et al., 1982]; [Mitelman et al., 1978]). The emergence of AML after cytotoxic therapy was initially recognized in patients with Hodgkin’s disease, one of the first malignancies cured with cytotoxic therapy. In the case of Hodgkin’s disease, the leukemia arises from the background of multi-agent cytotoxic therapy that includes alkylating agents, often in combination with radiation ([Levine & Bloomfield, 1992]; [Pedersen-Bjergaard & Larsen, 1982]). Recent reports of therapy-related myelodysplastic syndromes (MDS) and AML encountered in patients with Hodgkin’s and non-Hodgkin’s lymphoma following high-dose chemotherapy and autologous bone marrow transplantation (ASCT) have confirmed a positive relationship between the cumulative dose of alkylating agents and the risk of developing secondary AML ([Andre et al., 1998]; [Darrington et al., 1994]; [Harrison et al., 1999]; [Milligan et al., 1999]; [Pedersen-Bjergaard et al., 2000]; [Traweek et al., 1994]). In several studies, the cumulative risk of secondary MDS/AML has varied widely from 1.1% at 20 months to 24.3% 43 months after ASCT ([Pedersen-Bjergaard et al., 1997]; [Taylor et al., 1997]).


Vascular Endothelial Growth Factor Acute Myeloid Leukemia Acute Leukemia Myelodysplastic Syndrome Acute Myeloid Leukemia Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. The Fourth International Workshop on Chromosomes in Leukemia: a prospective study of acute nonlymphocytic leukemia. Chicago, Illinois, U.S.A., September 2–7, 1982.Cancer Genet Cytogenet 11249–360.Google Scholar
  2. Adler, H.T., Chinery, R., Wu, D.Y., Kussick, S.J., Payne, J.M., Fomace, A.J., Jr. & Tkachuk, D.C. (1999). Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins.Molecular and Cellular Biology19, 7050–60.PubMedGoogle Scholar
  3. Aguayo, A., Estey, E., Kantarjian, H., Mansouri, T., Gidel, C., Keating, M., Giles, F., Estrov, Z., Barlogie, B. & Albitar, M. (1999). Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia.Blood94, 3717–21.PubMedGoogle Scholar
  4. Andre, M., Henry-Amar, M., Blaise, D., Colombat, P., Fleury, J., Milpied, N., Cahn, J.Y., Pico, J.L., Bastion, Y., Kuentz, M., Nedellec, G., Attal, M., Ferme, C. & Gisselbrecht, C. (1998). Treatment-related deaths and second cancer risk after autologous stem-cell transplantation for Hodgkin’s disease.Blood92, 1933–40.PubMedGoogle Scholar
  5. Aoki, E., Uchida, T., Ohashi, H., Nagai, H., Murase, T., Ichikawa, A., Yamao, K., Hotta, T., Kinoshita, T., Saito, H. & Murate, T. (2000). Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes.Leukemia14, 586–93.PubMedCrossRefGoogle Scholar
  6. Aplan, P.D., Chervinsky, D.S., Stanulla, M. & Burhans, W.C. (1996). Site-specific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors [see comments].Blood87, 2649–58.PubMedGoogle Scholar
  7. Asano, M., Yukita, A., Matsumoto, T., Kondo, S. & Suzuki, H. (1995). Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor121.Cancer Research 555296–301.PubMedGoogle Scholar
  8. Bartram, C.R. (1996). Molecular genetic aspects of myelodysplastic syndromes.Seminars in Hematology 33 139–49.PubMedGoogle Scholar
  9. Bautz, F., Rafii, S., Kanz, L. & Mohle, R. (2000). Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment.Experimental Hematology 28 700–6.PubMedCrossRefGoogle Scholar
  10. Bazett-Jones, D.P., Cote, J., Landel, C.C., Peterson, C.L. & Workman, J.L. (1999). The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains.Molecular and Cellular Biology 19 1470–8.PubMedGoogle Scholar
  11. Beaupre, D.M. & Kurzrock, R. (1999). RAS and leukemia: from basic mechanisms to gene-directed therapy.Journal of Clinical Oncology 17 1071–9.PubMedGoogle Scholar
  12. Bergsland, E., Hurwitz, H., Fehrenbacher, L., Meropol, N.J., Novotny, W.F., Gaudreault, J., Lieberman, G. & Kabbinavar, F. (2000). A randomized phase II trial comparing rhuMAb VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) plus 5-fluorouracil/leucovorin (FU/LV) to FU/LV alone in patients with metastatic colorectal cancer.Proceedings of ASCO 19 242a:939 (abstr).Google Scholar
  13. Bertolini, F., Mancuso, P., Gobbi, A. & Pruneri, G. (2000). The thin red line. Angiogenesis In normal and malignant hematopoiesis. Experimental Hematology 28993–1000.PubMedCrossRefGoogle Scholar
  14. Bikfalvi, A. & Han, Z.C. (1994). Angiogenic factors are hematopoietic growth factors and vice versa.Leukemia 8 523–9.PubMedGoogle Scholar
  15. Blair, A., Hogge, D.E. & Sutherland, H.J. (1998). Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR.Blood 92 4325–35.PubMedGoogle Scholar
  16. Bokemeyer, C. & Schmoll, H.J. (1995). Treatment of testicular cancer and the development of secondary malignancies.Journal of Clinical Oncology 13 283–92.PubMedGoogle Scholar
  17. Bollag, G., Clapp, D.W., Shih, S., Adler, F., Zhang, Y.Y., Thompson, P., Lange, B.J., Freedman, M.H., McCormick, F., Jacks, T. & Shannon, K. (1996). Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells.Nature Genetics 12 144–8.PubMedCrossRefGoogle Scholar
  18. Bonnet, D. & Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nature Medicine3, 730–7.PubMedCrossRefGoogle Scholar
  19. Bos, J.L., Verlaan-de Vries, M., van der Eb, A.J., Janssen, J.W., Delwel, R., Lowenberg, B. & Colly, L.P. (1987). Mutations in N-ras predominate in acute myeloid leukemia.Blood 69 1237–41.Google Scholar
  20. Brekken, R.A., Overholser, J.P., Stastny, V.A., Waltenberger, J., Minna, J.D. & Thorpe, P.E. (2000). Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice.Cancer Research 60 5117–24.PubMedGoogle Scholar
  21. Brem, S. (1999). Angiogenesis and Cancer Control: From Concept to Therapeutic Trial.Cancer Control 6 436–458.PubMedGoogle Scholar
  22. Broeker, P.L., Super, H.G., Thirman, M.J., Pomykala, H., Yonebayashi, Y., Tanabe, S., Zeleznik-Le, N. & Rowley, J.D. (1996). Distribution of 11823 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sitesBlood87,1912–22PubMedGoogle Scholar
  23. Bussolino, F., Colotta, F., Bocchietto, E., Guglielmetti, A. & Mantovani, A. (1993). Recent developments in the cell biology of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor: activities on endothelial cells.International Journal of Clinical and Laboratory Research23, 8–12.PubMedCrossRefGoogle Scholar
  24. Cairns, B.R., Henry, N.L. & Kornberg, R.D. (1996). TFG/TAF30/ANCI, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9.Molecular and Cellular Biology16, 3308–16.PubMedGoogle Scholar
  25. Cameron, E.E., Bachman, K.E., Myohanen, S., Herman, J.G. & Baylin, S.B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer.Nature Genetics21, 103–7.PubMedCrossRefGoogle Scholar
  26. Chen, C.L., Fuscoe, J.C., Liu, Q., Pui, C.H., Mahmoud, H.H. & Relling, M.V. (1996). Relationship between cytotoxicity and site-specific DNA recombination after in vitro exposure of leukemia cells to etoposide [see comments].Journal of the National Cancer Institutes88, 1840–7.CrossRefGoogle Scholar
  27. Corral, J., Lavenir, I., Impey, H., Warren, A.J., Forster, A., Larson, T.A., Bell, S., McKenzie, A.N., King, G. & Rabbitts, T.H. (1996). An M11–AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes.Cell85, 853–61.PubMedCrossRefGoogle Scholar
  28. Darrington, D.L., Vose, J.M., Anderson, J.R., Bierman, P.J., Bishop, M.R., Chan, W.C., Morris, M.E., Reed, E.C., Sanger, W.G., Tarantolo, S.R. & et al. (1994). Incidence and characterization of secondary myelodysplastic syndrome and acute myelogenous leukemia following high-dose chemoradiotherapy and autologous stem-cell transplantation for lymphoid malignancies.Journal of Clinical Oncology12, 252734.Google Scholar
  29. Davey, C., Pennings, S. & Allan, J. (1997). CpG methylation remodels chromatin structure in vitro.Journal of Molecular Biology267, 276–88.PubMedCrossRefGoogle Scholar
  30. DeVore, R.F., Fehrenbacher, L., Herbst, R.S., Langer, C.J., Kelly, K., Gaudreault, J., Holmgren, E., Novotny, W.F. & Kabbinavar, F. (2000). A randomized phase II trial comparing Rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage III/IV NSCLC.Proceedings ofASCO19, 485a:1896 (abstr).Google Scholar
  31. Dias, S., Zhu, Z., Wu, Y., Witte, L., Hicklin, D.J. & Raffi, S. (2000). Expression of VEGF and its receptor VEGF-2 by human leukemia cells generate an autocrine loop that mediates cell growth and migration.Proceedings of American Association for Cancer Research41, 792 (abstr).Google Scholar
  32. DiGiuseppe, J.A., Weng, L.J., Yu, K.H., Fu, S., Kastan, M.B., Samid, D.&Gore, S.D. (1999). Phenylbutyrate-induced GI arrest and apoptosis in myeloid leukemia cells: structure-function analysis.Leukemia, 13, 1243–53.PubMedCrossRefGoogle Scholar
  33. Djabali, M., Selleri, L., Parry, P., Bower, M., Young, B.D. & Evans, G.A. (1992). A trithoraxlike gene is interrupted by chromosome 11g23 translocations in acute leukaemias [published erratum appears in Nat Genet 1993 Aug;4(4):431].Nature Genetics2, 113–8.PubMedCrossRefGoogle Scholar
  34. Dobson, C.L., Warren, A.J., Pannell, R., Forster, A., Lavenir, I., Corral, J., Smith, A.J. & Rabbitts, T.H. (1999). The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis.Embo Journal18, 3564–74.PubMedCrossRefGoogle Scholar
  35. Dohner, K., Brown, J., Hehmann, U., Hetzel, C., Stewart, J., Lowther, G., Scholl, C., Frohling, S., Cuneo, A., Tsui, L.C., Lichter, P., Scherer, S.W. & Dohner, H. (1998). Molecular cytogenetic characterization of a critical region in bands 7q35-q36 commonly deleted in malignant myeloid disorders.Blood92, 4031–5.PubMedGoogle Scholar
  36. Du, W., Lebowitz, P.F. & Prendergast, G.C. (1999). Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB.Moecular and Cellular Biology 19 1831–40.Google Scholar
  37. Egan, S.E., Giddings, B.W., Brooks, M.W., Buday, L., Sizeland, A.M. & Weinberg, R.A. (1993). Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation [see comments].Nature 363 45–51.PubMedCrossRefGoogle Scholar
  38. End, D.W. (1999). Farnesyl protein transferase inhibitors and other therapies targeting the Ras signal transduction pathway.Investigational New Drugs 17 241–58.PubMedCrossRefGoogle Scholar
  39. Feuring-Buske, M., Haase, D., Buske, C., Hiddemann, W. & Wormann, B. (1999). Clonal chromosomal abnormalities in the stem cell compartment of patients with acute myeloid leukemia in morphological complete remission.Leukemia 13 386–92.PubMedCrossRefGoogle Scholar
  40. Fiedler, W., Graeven, U., Ergun, S., Verago, S., Kilic, N., Stockschlader, M.&Hossfeld, D.K. (1997). Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia.Blood,891870–5.PubMedGoogle Scholar
  41. Fischer, K., Frohling, S., Scherer, S.W., McAllister Brown, J., Scholl, C., Stilgenbauer, S., Tsui, L.C., Lichter, P. & Dohner, H. (1997). Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias.Blood 89 2036–41.PubMedGoogle Scholar
  42. Fong, T.A., Shawver, L.K., Sun, L., Tang, C., App, H., Powell, T.J., Kim, Y.H., Schreck, R., Wang, X., Risau, W., Ullrich, A., Hirth, K.P. & McMahon, G. (1999). SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types.Cancer Research 59 99–106.PubMedGoogle Scholar
  43. Gabrilove, J.L., White, K., Rahman, Z. & Wilson, E.L. (1994). Stem cell factor and basic fibroblast growth factor are synergistic in augmenting committed myeloid progenitor cell growth.Blood 83 907–10.PubMedGoogle Scholar
  44. Gelb, M.H. (1997). Protein prenylation, et cetera: signal transduction in two dimensions [comment].Science 275, 1750–1. Google Scholar
  45. Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P.G. & Lazar, M.A. (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO.Molecular and Cellular Biology 18 7185–91.PubMedGoogle Scholar
  46. Golomb, H.M., Alimena, G., Rowley, J.D., Vardiman, J.W., Testa, J.R. & Sovik, C. (1982). Correlation of occupation and karyotype in adults with acute nonlymphocytic leukemia.Blood 60 404–11.PubMedGoogle Scholar
  47. Grignani, F., De Matteis, S., Nervi, C., Tomassoni, L., Gelmetti, V., Cioce, M., Fanelli, M., Ruthardt, M., Ferrara, F.F., Zamir, I., Seiser, C., Lazar, M.A., Minucci, S. & Pelicci, P.G. (1998). Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia.Nature 391 815–8.PubMedCrossRefGoogle Scholar
  48. Guidez, F., Ivins, S., Zhu, J., Soderstrom, M., Waxman, S. & Zelent, A. (1998). Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZFRARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia.Blood 91 2634–42.PubMedGoogle Scholar
  49. Haase, D., Feuring-Buske, M., Konemann, S., Fonatsch, C., Troff, C., Verbeek, W., Pekrun, A., Hiddemann, W. & Wormann, B. (1995). Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations.Blood 86 2906–12.PubMedGoogle Scholar
  50. Hannon, G.J. & Beach, D. (1994). p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest [see comments].Nature 371 257–61.PubMedCrossRefGoogle Scholar
  51. Harrison, C.N., Gregory, W., Hudson, G.V., Devereux, S., Goldstone, A.H., Hancock, B., Winfield, D., MacMillan, A.K., Hoskin, P., Newland, A.C., Milligan, D. & Linch, D.C. (1999). High-dose BEAM chemotherapy with autologous haemopoietic stem cell transplantation for Hodgkin’s disease is unlikely to be associated with a major increased risk of secondary MDS/AML.British Journal of Cancer 81 476–83.PubMedCrossRefGoogle Scholar
  52. Hunger, S.P., Tkachuk, D.C., Amylon, M.D., Link, M.P., Carroll, A.J., Welborn, J.L., Willman, C.L. & Cleary, M.L. (1993). HRX involvement in de novo and secondary leukemias with diverse chromosome l 1 q23 abnormalities [see comments].Blood 81 3197–203.PubMedGoogle Scholar
  53. Hussong, J.W., Rodgers, G.M. & Shami, P.J. (2000). Evidence of increased angiogenesis in patients with acute myeloid leukemia.Blood 95 309–13.PubMedGoogle Scholar
  54. Ida, K., Kitabayashi, I., Taki, T., Taniwaki, M., Noro, K., Yamamoto, M., Ohki, M. & Hayashi, Y. (1997). Adenoviral EIA-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(g23;g13).Blood 90 4699–704.PubMedGoogle Scholar
  55. Ito, T. & May, W.S. (1996). Drug development train gathering steam.Nature Medicine 2 4034.CrossRefGoogle Scholar
  56. Jiang, K., Coppola, D., Crespo, N.C., Nicosia, S.V., Hamilton, A.D., Sebti, S.M. & Cheng, J.Q. (2000), The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for famesyltransferase inhibitor-induced apoptosis.Molecular and Cellular Biology 20 139–48.PubMedCrossRefGoogle Scholar
  57. Johansson, B., Mertens, F. & Mitelman, F. (1993). Cytogenetic deletion maps of hematologic neoplasms: circumstantial evidence for tumor suppressor loci.Genes Chromosomes and Cancer 8 205–18.PubMedCrossRefGoogle Scholar
  58. Jones, P.L., Veenstra, G.J., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., Strouboulis, J. & Wolffe, A.P. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.Nature Genetics19, 187–91.PubMedCrossRefGoogle Scholar
  59. Jordan, C.T., Upchurch, D., Szilvassy, S.J., Guzman, M.L., Howard, D.S., Pettigrew, A.L., Meyerrose, T., Rossi, R., Grimes, B., Rizzieri, D.A., Luger, S.M. & Phillips, G.L. (2000). The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells [In Process Citation].Leukemia 14 1777–84.PubMedCrossRefGoogle Scholar
  60. Karp, J.E.&Sarkodee-Adoo, C.B. (2000). Therapy-related acute leukemia.Clinical and Laboratory Medicine,2071–81, ix.Google Scholar
  61. Karp, J.E. & Smith, M.A. (1997). The molecular pathogenesis of treatment-induced (secondary) leukemias: foundations for treatment and prevention.Seminars in Oncology 24 103–13.PubMedGoogle Scholar
  62. Kennedy, M., Firpo, M., Choi, K., Wall, C., Robertson, S., Kabrun, N. & Keller, G. (1997). A common precursor for primitive erythropoiesis and definitive haematopoiesis.Nature 386 488–93.PubMedCrossRefGoogle Scholar
  63. Kere, J., Donis-Keller, H., Ruutu, T. & de la Chapelle, A. (1989). Chromosome 7 long-arm deletions in myeloid disorders: terminal DNA sequences are commonly conserved and breakpoints vary.Cytogenetics and Cell Genetics50, 226–9.PubMedCrossRefGoogle Scholar
  64. Khosravi-Far, R., Cox, A.D., Kato, K. & Der, C.J. (1992). Protein prenylation: key to ras function and cancer intervention?Cell Growth and Differentiation 3 461–9.PubMedGoogle Scholar
  65. Kollmannsberger, C., Beyer, J., Droz, J.P., Harstrick, A., Hartmann, J.T., Biron, P., Flechon, A., Schoffski, P., Kuczyk, M., Schmoll, H.J., Kanz, L. & Bokemeyer, C. (1998). Secondary leukemia following high cumulative doses of etoposide in patients treated for advanced germ cell tumors.Journal of Clinical Oncology16, 3386–91.PubMedGoogle Scholar
  66. Kosugi, H., Towatari, M., Hatano, S., Kitamura, K., Kiyoi, H., Kinoshita, T., Tanimoto, M., Murate, T., Kawashima, K., Saito, H. & Naoe, T. (1999). Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy.Leukemia 13 1316–24.PubMedCrossRefGoogle Scholar
  67. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A. & Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature 367 645–8.PubMedCrossRefGoogle Scholar
  68. Larson, R.A., Wang, Y., Banerjee, M., Wiemels, J., Hartford, C., Le Beau, M.M. & Smith, M.T. (1999). Prevalence of the inactivating 609C-->T polymorphism in the NAD(P)H:quinone oxidoreductase (NQOI) gene in patients with primary and therapy-related myeloid leukemia.Blood94, 803–7.PubMedGoogle Scholar
  69. Lawrence, H.J. & Largman, C. (1992). Homeobox genes in normal hematopoiesis and leukemia.Blood80, 2445–53.PubMedGoogle Scholar
  70. Le Beau, M.M., Albain, K.S., Larson, R.A., Vardiman, J.W., Davis, E.M., Blough, R.R., Golomb, H.M. & Rowley, J.D. (1986). Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and7. Journal of Clinical Oncology4, 325–45.Google Scholar
  71. Le Beau, M.M., Espinosa, R., 3rd, Davis, E.M., Eisenbart, J.D., Larson, R.A. & Green, E.D. (1996). Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases.Blood88, 1930–5.PubMedGoogle Scholar
  72. Lebowitz, P.F. & Prendergast, G.C. (1998). Non-Ras targets of famesyltransferase inhibitors: focus on Rho.Oncogene17, 1439–45.PubMedCrossRefGoogle Scholar
  73. Levine, E.G. & Bloomfield, C.D. (1992). Leukemias and myelodysplastic syndromes secondary to drug, radiation, and environmental exposure.Seminars in Oncology19, 47–84.PubMedGoogle Scholar
  74. Lewis, S., Abrahamson, G., Boultwood, J., Fidler, C., Potter, A. & Wainscoat, J.S. (1996). Molecular characterization of the 7q deletion in myeloid disorders.British Journal of Haematology93, 75–80.PubMedCrossRefGoogle Scholar
  75. Li, N., Batzer, A., Daly, R., Yajnik, V., Skolnik, E., Chardin, P., Bar-Sagi, D., Margolis, B. & Schlessinger, J. (1993). Guanine-nucleotide-releasing factor hSosl binds to Grb2 and links receptor tyrosine kinases to Ras signalling [see comments].Nature363, 85–8.PubMedCrossRefGoogle Scholar
  76. Lin, R.J., Nagy, L., Inoue, S., Shao, W., Miller, W.H., Jr. & Evans, R.M. (1998). Role of the histone deacetylase complex in acute promyelocytic leukaemia.Nature391, 811–4.PubMedCrossRefGoogle Scholar
  77. Lorincz, M.C., Schubeler, D., Goeke, S.C., Walters, M., Groudine, M. & Martin, D.I. (2000). Dynamic analysis of proviral induction and De Novo methylation: implications for a histone deacetylase-independent, methylation density-dependent mechanism of transcriptional repression.Molecular and Cellular Biology20, 842–50.PubMedCrossRefGoogle Scholar
  78. Luna-Fineman, S., Shannon, K.M. & Lange, B.J. (1995). Childhood monosomy 7: epidemiology, biology, and mechanistic implications.Blood85, 1985–99.PubMedGoogle Scholar
  79. Lutterbach, B., Westendorf, J.J., Linggi, B., Patten, A., Moniwa, M., Davie, J.R., Huynh, K.D., Bardwell, V.J., Lavinsky, R.M., Rosenfeld, M.G., Glass, C., Seto, E. & Hiebert, S.W. (1998). ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors.Molecular and Cellular Biology18, 7176–84.PubMedGoogle Scholar
  80. Ma, Q., Alder, H., Nelson, K.K., Chatterjee, D., Gu, Y., Nakamura, T., Canaani, E., Croce, C.M., Siracusa, L.D. & Buchberg, A.M. (1993). Analysis of the murine A11–1 gene reveals conserved domains with human ALL-1 and identifies a motif shared with DNA methyltransferases.Proceedings of the National Academy of Sciences USA90, 6350–4.CrossRefGoogle Scholar
  81. Marks, P.A., Richon, V.M. & Rifkind, R.A. (2000). Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells.Journal of the National Cancer Institutes92, 1210–6.CrossRefGoogle Scholar
  82. Mehrotra, B., George, T.I., Kavanau, K., Avet-Loiseau, H., Moore, D., 2nd, Willman, C.L., Slovak, M.L., Atwater, S., Head, D.R. & Pallavicini, M.G. (1995). Cytogenetically aberrant cells in the stem cell compartment (CD34+lin-) in acute myeloid leukemia.Blood86, 1139–47.PubMedGoogle Scholar
  83. Milligan, D.W., Ruiz De Elvira, M.C., Kolb, H.J., Goldstone, A.H., Meloni, G., Rohatiner, A.Z., Colombat, P. & Schmitz, N. (1999). Secondary leukaemia and myelodysplasia after autografting for lymphoma: results from the EBMT. EBMT Lymphoma and Late Effects Working Parties. European Group for Blood and Marrow Transplantation.British Journal of Haematology106, 1020–6.PubMedCrossRefGoogle Scholar
  84. Mitelman, F., Brandt, L. & Nilsson, P.G. (1978). Relation among occupational exposure to potential mutagenic/carcinogenic agents, clinical findings, and bone marrow chromosomes in acute nonlymphocytic leukemia.Blood 52 1229–37.PubMedGoogle Scholar
  85. Mizuki, N., Kimura, M., Ohno, S., Miyata, S., Sato, M., Ando, H., Ishihara, M., Goto, K., Watanabe, S., Yamazaki, M., Ono, A., Taguchi, S., Okumura, K., Nogami, M., Taguchi, T., Ando, A.&Inoko, H. (1996). Isolation of cDNA and genomic clones of a human Ras-related GTP-binding protein gene and its chromosomal localization to the long arm of chromosome 7, 7q36.Genomics,34114–8.PubMedCrossRefGoogle Scholar
  86. Nan, X., Campoy, F.J. & Bird, A. (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.Cell 88 471–81.PubMedCrossRefGoogle Scholar
  87. Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. & Bird, A. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex [see comments].Nature 393 386–9.PubMedCrossRefGoogle Scholar
  88. Neubauer, A., Dodge, R.K., George, S.L., Davey, F.R., Silver, R.T., Schiffer, C.A., Mayer, R.J., Ball, E.D., Wurster-Hill, D., Bloomfield, C.D. & et aI. (1994). Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia.Blood 83 1603–11.PubMedGoogle Scholar
  89. Neuman, W.L., Rubin, C.M., Rios, R.B., Larson, R.A., Le Beau, M.M., Rowley, J.D., Vardiman, J.W., Schwartz, J.L. & Farber, R.A. (1992). Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders.Blood 79 1501–10.PubMedGoogle Scholar
  90. Nilsson, L., Astrand-Grundstrom, I., Arvidsson, I., Jacobsson, B., Hellstrom-Lindberg, E., Hast, R. & Jacobsen, S.E. (2000). Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level.Blood 96 2012–21.PubMedGoogle Scholar
  91. Padro, T., Ruiz, S., Bieker, R., Burger, H., Steins, M., Kienast, J., Buchner, T., Berdel, W.E. & Mesters, R.M. (2000). Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia.Blood 95 2637–44.PubMedGoogle Scholar
  92. Paquette, R.L., Landaw, E.M., Pierre, R.V., Kahan, J., Lubbert, M., Lazcano, O., Isaac, G., McCormick, F. & Koeffler, H.P. (1993). N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome.Blood 82 590–9.PubMedGoogle Scholar
  93. Pedersen-Bjergaard, J., Andersen, M.K. & Christiansen, D.H. (2000). Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation.Blood 95 3273–9.PubMedGoogle Scholar
  94. Pedersen-Bjergaard, J. & Larsen, S.O. (1982). Incidence of acute nonlymphocytic leukemia, preleukemia, and acute myeloproliferative syndrome up to 10 years after treatment of Hodgkin’s disease.New England Journal of Medicine 307 965–71.PubMedCrossRefGoogle Scholar
  95. Pedersen-Bjergaard, J., Pedersen, M., Myhre, J. & Geisler, C. (1997). High risk of therapy-related leukemia after BEAM chemotherapy and autologous stem cell transplantation for previously treated lymphomas is mainly related to primary chemotherapy and not to the BEAM-transplantation procedure.Leukemia 111654–60.PubMedCrossRefGoogle Scholar
  96. Pedersen-Bjergaard, J. & Rowley, J.D. (1994). The balanced and the unbalanced chromosome aberrations of acute myeloid leukemia may develop in different ways and may contribute differently to malignant transformation.Blood 83 2780–6.PubMedGoogle Scholar
  97. Pui, C.H., Ribciro, R.C., Hancock, M.L., Rivera, G.K., Evans, W.E., Raimondi, S.C., Head, D.R., Behm, E.G., Mahmoud, M.H., Sandlund, J.T. & et al. (1991). Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia.New England Journal of Medicine 325 1682–7.PubMedCrossRefGoogle Scholar
  98. Quesnel, B., Guillerm, G., Vereecque, R., Wattel, E., Preudhomme, C., Bauters, F., Vanrumbeke, M. & Fenaux, P. (1998). Methylation of the pl5(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression.Blood 91 2985–90.PubMedGoogle Scholar
  99. Raza, A., Lisak, L., Andrews, C., Little, L., Muzammil, M., Alvi, S., Mazzoran, L., Zorat, F., Akber, A., Ekbal, M., Razvi, S. & Venugopal, P. (1999). Thalidomide produces transfusion independence in patients with long-standing refractory anemias and myelodysplastic syndromes.Blood 94, 661a (abstr).Google Scholar
  100. Razin, A. & Cedar, H. (1991). DNA methylation and gene expression.Microbiology Reviews 55 451–8.Google Scholar
  101. Rebollo, A. & Martinez, A.C. (1999). Ras proteins: recent advances and new functions.Blood 94 2971–80.PubMedGoogle Scholar
  102. Redner, R.L., Wang, J. & Liu, J.M. (1999). Chromatin remodeling and leukemia: new therapeutic paradigms.Blood 94 417–28.PubMedGoogle Scholar
  103. Reeves, R. & Nissen, M.S. (1990). The A.T-DNA-binding domain of mammalian high mobility groupIchromosomal proteins. A novel peptide motif for recognizing DNA structure.Journal of Biological Chemistry,2658573–82.PubMedGoogle Scholar
  104. Reuter, C.W., Morgan, M.A. & Bergmann, L. (2000). Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies?Blood 96 165–569.Google Scholar
  105. Rozenblatt-Rosen, O., Rozovskaia, T., Burakov, D., Sedkov, Y., Tillib, S., Blechman, J., Nakamura, T., Croce, C.M., Mazo, A. & Canaani, E. (1998). The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INII and SNRI proteins, components of the SWI/SNF complex.Proceedings of National Academy of Sciences USA 95 4152–7.CrossRefGoogle Scholar
  106. Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., Ando, T., Suzuki, T., Tsuruo, T. & Nakanishi, O. (1999). A synthetic inhibitor of histone deacetylase, MS-27–275, with marked in vivo antitumor activity against human tumors.Proceedings of National Academy of Sciences U S A 96 4592–7.CrossRefGoogle Scholar
  107. Sasaoka, T., Rose, D.W., Jhun, B.H., Saltiel, A.R., Draznin, B. & Olefsky, J.M. (1994). Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor.Journal of Biological Chemistry 269 13689–94.PubMedGoogle Scholar
  108. Shannon, K.M., O’Connell, P., Martin, G.A., Paderanga, D., Olson, K., Dinndorf, P.&McCormick, F. (1994). Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders [see comments].New England Journal of Medicine,330597–601.Google Scholar
  109. Singhal, S., Mehta, J., Desikan, R., Ayers, D., Roberson, P., Eddlemon, P., Munshi, N., Anaissie, E., Wilson, C., Dhodapkar, M., Zeddis, J. & Barlogie, B. (1999). Antitumor activity of thalidomide in refractory multiple myeloma [see comments] [published erratum appears in N EnglJMed 2000 Feb 3;342(5):364].New England Journal of Medicine,3411565–71.PubMedCrossRefGoogle Scholar
  110. Slany, R.K., Lavau, C. & Cleary, M.L. (1998). The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX.Molecular and Cellular Biology 18 122–9.PubMedGoogle Scholar
  111. Sobulo, O.M., Borrow, J., Tomek, R., Reshmi, S., Harden, A., Schlegelberger, B., Housman, D., Doggett, N.A., Rowley, J.D. & Zeleznik-Le, N.J. (1997). MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(1 I;I6)(g23;p13.3).Proceedins of National Academy of Sciences USA 94 8732–7.CrossRefGoogle Scholar
  112. Stillman, W.S., Varella-Garcia, M. & Irons, R.D. (2000). The benzene metabolite, hydroquinone, selectively induces 5q31- and -7 in human CD34+CD19- bone marrow cells.Experimental Hematology 28 169–76.PubMedCrossRefGoogle Scholar
  113. Stopka, T., Zakova, D., Fuchs, O., Kubrova, O., Blafkova, J., Jelinek, J., Necas, E. & Zivny, J. (2000). Chromatin remodeling gene SMARCA5 is dysregulated in primitive hematopoietic cells of acute leukemia.Leukemia 14 1247–52.PubMedCrossRefGoogle Scholar
  114. Sugita, K., Furukawa, T., Tsuchida, M., Okawa, Y., Nakazawa, S., Akatsuka, J., Ohira, M. & Nishimura, K. (1993). High frequency of etoposide (VP-l6)-related secondary leukemia in children with non-Hodgkin’s lymphoma [see comments].American Journal of Pediatric Hematology and Oncology 15 99–104.CrossRefGoogle Scholar
  115. Super, H.J., McCabe, N.R., Thirman, M.J., Larson, R.A., Le Beau, M.M., Pedersen-BjergaardJ.Philip, P., Diaz, M.O. & Rowley, J.D. (1993). Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 823705–11.PubMedGoogle Scholar
  116. Taylor, J.A., Sandler, D.P., Bloomfield, C.D., Shore, D.L., Ball, E.D., Neubauer, A., McIntyre, O.R. & Liu, E. (1992). ras oncogene activation and occupational exposures in acute myeloid leukemia [see comments].Journal of the National Cancer Institutes 84 1626–32.CrossRefGoogle Scholar
  117. Taylor, P.R., Jackson, G.H., Lennard, A.L., Hamilton, P.J. & Proctor, S.J. (1997). Low incidence of myelodysplastic syndrome following transplantation using autologous non-cryopreserved bone marrow.Leukemia 111650–3.PubMedCrossRefGoogle Scholar
  118. Teofili, L., Morosetti, R., Martini, M., Urbano, R., Putzulu, R., Rutella, S., Pierelli, L., Leone, G. & Larocca, L.M. (2000). Expression of cyclin-dependent kinase inhibitor p15(INK4B) during normal and leukemic myeloid differentiation.Experimental Hematology 28 519–26.PubMedCrossRefGoogle Scholar
  119. Thirman, M.J., Gill, H.J., Burnett, R.C., Mbangkollo, D., McCabe, N.R., Kobayashi, H., Ziemin-van der Poel, S., Kaneko, Y., Morgan, R., Sandberg, A.A. & et al. (1993). Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11g23 chromosomal translocations [see comments].New England Journal of Medicine 329 909–14.PubMedCrossRefGoogle Scholar
  120. Thomas, D.A., Aguayo, A., Giles, F.J., Albitar, M., O’Brien, S.O., Cortes, J., Faderl, S., Bivins, C., Zeldis, J., Keating, M.J., Barlogie, B. & Kantarijan, H.M. (1999). Thalidomide anti-angiogenesis therapy in Phyladelphia-negative myeloproliferative disorders and myelofibrosis.Blood 94 702a (abstr).Google Scholar
  121. Thorn, J., Molloy, P. & Iland, H. (1995). SSCP detection of N-ras promoter mutations in AML patients.Experimental Hematology 23 1098–103.PubMedGoogle Scholar
  122. Traweek, S.T., Slovak, M.L., Nademanee, A.P., Brynes, R.K., Niland, J.C. & Forman, S.J. (1994). Clonal karyotypic hematopoietic cell abnormalities occurring. after autologous bone marrow transplantation for Hodgkin’s disease and non-Hodgkin’s lymphoma.Blood 84 957–63.PubMedGoogle Scholar
  123. Tycko, B. (2000). Epigenetic gene silencing in cancer.Journal of Clinical Investigation 105 401–7.PubMedCrossRefGoogle Scholar
  124. Uchida, T., Kinoshita, T., Nagai, H., Nakahara, Y., Saito, H., Hotta, T. & Murate, T. (1997). Hypermethylation of the p15INK4B gene in myelodysplastic syndromes.Blood 90 1403–9.PubMedGoogle Scholar
  125. Velloso, E.R., Michaux, L., Ferrant, A., Hernandez, J.M., Meeus, P., Dierlamm, J., Criel, A., Louwagie, A., Verhoef, G., Boogaerts, M., Michaux, J.L., Bosly, A., Mecucci, C. & Van den Berghe, H. (1996). Deletions of the long arm of chromosome 7 in myeloid disorders: loss of band 7q32 implies worst prognosis.British Journal of Haematology 92 574–81.PubMedCrossRefGoogle Scholar
  126. Warrell, R.P., Jr., He, L.Z., Richon, V., Calleja, E. & Pandolfi, P.P. (1998). Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase [see comments].Journal of the National Cancer Institutes 90 1621–5.CrossRefGoogle Scholar
  127. Wijermans, P., Lubbert, M., Verhoef, G., Bosly, A., Ravoet, C., Andre, M. & Ferrant, A. (2000). Low-dose 5-aza-2’-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients.Journal of Clinical Oncology 18956–62.PubMedGoogle Scholar
  128. Wild, R., Dhanabal, M., Olson, T.A. & Ramakrishnan, S. (2000). Inhibition of angiogenesis and tumour growth by VEGF121-toxin conjugate: differential effect on proliferating endothelial cells In Process Citation].British Journal of Cancer 83 1077-83.Google Scholar
  129. Wong, I.H., Ng, M.H., Huang, D.P. & Lee, J.C. (2000). Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications.Blood 951942–9.PubMedGoogle Scholar
  130. Yu, B.D., Hess, J.L., Homing, S.E., Brown, G.A. & Korsmeyer, S.J. (1995). Altered Hox expression and segmental identity in Mil-mutant mice.Nature 378505–8.PubMedCrossRefGoogle Scholar
  131. Ziegler, B.L., Valtieri, M., Porada, G.A., De Maria, R., Muller, R., Masella, B., Gabbianelli, M., Casella, I., Pelosi, E., Bock, T., Zanjani, E.D. & Peschle, C. (1999). KDR receptor: a key marker defining hematopoietic stem cells.Science 2851553–8.PubMedCrossRefGoogle Scholar
  132. Zwiebel, J.A. (2000). New agents for acute myelogenous leukemia.Leukemia 14488–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ivana Gojo
    • 1
  • Judith E. Karp
    • 1
  1. 1.Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimore

Personalised recommendations