Evolving Concepts in Myelodysplastic Syndromes

  • Azra Raza
Part of the Cancer Treatment and Research book series (CTAR, volume 108)


Increasingly in the United States, older individuals between 60 to 75 years of age are discovered as having a variable cytopenia, most commonly detected during a routine visit to the doctor. The clinician's instinctive sense that such low-grade abnormalities would passively loiter coupled with limited therapeutic options led to the non-interventional practice of following these patients with no more than periodic blood counts. In the last two decades, this habit has been replaced by bolder attempts at more precise definitions with the result that the vast majority of such individuals are winding up with a diagnosis of Myelodysplastic Syndrome or MDS. The best proof of this statement is provided by the fact that only 143 patients were recorded as having MDS until 1973 ([Saami & Linman, 1973]), while as many as 10,000 cases are being documented annually at the present time in the United States alone. This dramatic increase in incidence is the result of a combination of factors including an increase in the number of older individuals, aggressive attempts towards a specific diagnosis and probably an increase in the actual incidence of MDS due to toxic and chemical exposure. The exigent imperative for an accurate diagnosis comes first and foremost from an appreciation that MDS is not always a harmless pastiche of benign, poorly defined malaise in hematopoietic cells, but rather can be a deadly, exceedingly pernicious disease capable of killing swiftly.


Acute Myeloid Leukemia Acute Leukemia Myelodysplastic Syndrome Acquire Immune Deficiency Syndrome Cytogenetic Abnormality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abruzzese E, Buss D, Rainer R, Rao NP, & Pettenati MJ. (1996) Study of clonality in myelodysplastic syndromes: detection of trisomy 8 in bone marrow cell smears by fluorescence in situ hybridization.Leukemia Research20:551–557.PubMedCrossRefGoogle Scholar
  2. Allampallam K, Shetty V, Hussaini S, Mazzoran L, Zorat F, Huang R, & Raza A. (1999) Measurement of mRNA expression for a variety of cytokines and its receptors in bone arrows of patients with myelodysplastic syndromes.Anticancer Research19:5323–5328.PubMedGoogle Scholar
  3. Alvi S, Shaher A, Henderson B, Dar S, Zorat F, Broderick E, Lisak L, Du Randt M, Reddy P, Mundle S, Galili N, Borok RZ, & Raza A. (2000) Improved growth of stromal cells in long term bone marrow cultures (LTBMC) of myelodysplastic syndrome (MDS) patients treated with thalidomide.Blood96:359a, Abstract #1547.Google Scholar
  4. Aizawa S, Nakano M, Iwase O, Yaguchi M, Hiramoto M, Hoshi H, Nabeshima R, Shima D, Handa H, & Toyama K. (1999) Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD 34-positive cell proliferation and differentiation in vitro.Leukemia Research23:239–246.PubMedCrossRefGoogle Scholar
  5. Aizawa S, Hiramoto M, Hoshi H, Toyama K, Shima D, & Handa H. (2000) Establishment of stromal cell line from an MDS RA patient which induced an apoptotic change in hematopoietic and leukemic cells in vitro.Experimental Hematology28:148–155.PubMedCrossRefGoogle Scholar
  6. Anan K, Ito M, Misawa M, Ohe Y, Kai S, Kohsaki M, & Hara H. (1995) Department of Transfusion Medicine and Second Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan. Clonal analysis of peripheral blood and haemopoietic colonies in patients with aplastic anaemia and refractory anaemia using the polymorphic short tandem repeat on the human androgen-receptor (HUMARA) gene.British Journal of Haematology89:838–844.PubMedCrossRefGoogle Scholar
  7. Andreeff M, Stone R, Michaeli J, Young CW, Tong WP, Sogoloff H, Ervin T, Kufe D, Rifkind RA, & Marks PA (1992) Hexamethylene bisacetamide in myelodysplastic syndromes and acute myelogenous leukemia: a phase II clinical trial with a differentiating agent.Blood80: 2604–2609.PubMedGoogle Scholar
  8. Anzai N, Kawabata H, Hishita T, Yoshida Y, Ueda Y, & Okuma M. (1997) Ca2’/ Mg 2+ dependent endonuclease in marrow CD34 positive and erythroid cells in myelodysplasia.Leukemia Research21:731–734.PubMedCrossRefGoogle Scholar
  9. Aul C, Runde V, & Gatterman N (1993) All-trans-retinoic acid in patients with myelodysplastic syndromes: results of a pilot study.Blood82: 2967–2974.PubMedGoogle Scholar
  10. Bennett JM, Catovsky D, Flandrin DMT, Galton DGAD, Gralnick HR, & Sultan C (1982) Proposal for the classification of myelodysplastic syndromes.British Journal of Haematology51: 189–199.PubMedGoogle Scholar
  11. Biesma DH, van den Tweel JG, & Verdonck LF. (1997) Immunosuppressive therapy for hypoplastic myelodysplastic syndrome.Cancer79: 1548–1551.PubMedCrossRefGoogle Scholar
  12. Busque L, & Gilliland GD. (1993) Clonal evolution in acute myeloid leukemia.Blood82:337–342.PubMedGoogle Scholar
  13. Clark DM, & Lampert IA. (1990) Apoptosis is a common histopathological finding in myelodysplasia: The correlate of ineffective haematopoiesis.Leukemia and Lymphoma2:415–418.CrossRefGoogle Scholar
  14. Flores-Figueroa E, Gutierrez-Espindola G, Guerrero-Rivera S, Pizzuto-Chavez J, & Mayani H. (1999) Hematopoietic progenitor cells from patients with myelodysplastic syndromes: In vitro colony growth and long term proliferation.Leukemia Research23:385–394.PubMedCrossRefGoogle Scholar
  15. Freedman MH, Cohen A, Grunberger T, Bunin N, Luddy RE, Saunders FE, Shahidi N, Lau A, & Estrov Z. (1992) Central role of tumour necrosis factor, GM-CSF, and interleukin 1 in the pathogenesis of juvenile chronic myelogenous leukaemia.British Journal of Haematology80:40–48.PubMedCrossRefGoogle Scholar
  16. Gale RE, Bunch CE, Moir DJ, Patterson KG, Goldstone AH, & Linch DC. (1996) Demonstration of developing myelodysplasia/acute myeloid leukemia in hematologically normal patients after high dose chemotherapy and autologous bone marrow transplantation using X chromosome inactivation patterns.British Journal of Haematology93: 53–58.PubMedCrossRefGoogle Scholar
  17. Ganser A, Ottoman OG, Seipelt G, Lindemann A, & Hess U et al (1993) Effects of long-term treatment with recombinant interleukin-3 in patients with myelodysplastic syndromes.Leukemia7: 696–701.PubMedGoogle Scholar
  18. Gersuk GM, Beckham C, Loken MR, Kiener P, Anderson JE, Farrand A, Troutt AB, Ledbetter JA, & Deeg JH. (1998) A role for tumour necrosis factor-a, FAS and FAS-Ligand in marrow failure associated with myelodysplastic syndrome.British Journal of Haematology103:176–188.PubMedCrossRefGoogle Scholar
  19. Gordon MS, Nemunitis J, Hoffman R, Paquette RL, Rosenfeld C, Manfrede C, Isaacs R, & Nimer SD. (1995) A phase I trial of recombinant interleukin-6 in patients with myelodysplastic syndromes and thrombocytopenia.Blood85: 3066–3076.PubMedGoogle Scholar
  20. Greenberg PL. (1992) In vitro marrow culture studies in myelodysplastic syndromes.Seminars in Oncology19: 34–46.PubMedGoogle Scholar
  21. Greenberg PL, Cox C, Le Beau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vellaspi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, & Bennett JM (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes.Blood89: 2079–2088.PubMedGoogle Scholar
  22. Heim S. (1992) Cytogenetic findings in primary and secondary MDS.Leukemia Research16:43–46.PubMedCrossRefGoogle Scholar
  23. Hellstrom-Lindberg E (1995) Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies.British Journal of Haematology89: 831–837.Google Scholar
  24. Hellstrom-Lindberg E, Ahlgren T, Beguin Y, Carlsson M, Carneskog J, Dahl IM, Dybedal I, Grimfors G, Kanter-Lewensohn L, Linder O, Luthman M, Lofvenberg E, NilssonEhle H, Samuelsson J, Tangen JM, Winqvist I, Oberg G, & Ost A (1998) Treatment of anemia in myelodysplastic syndromes with granulocte colony-stimulating factor plus erythropoietin: results from a randomized Phase Il study and long term follow-up of 71 patients.Blood92:68–75.PubMedGoogle Scholar
  25. Hibner U, & Coutinho A. (1994) Signal antonymy: A mechanism for apoptosis induction.Cell Death and Differentiation1:33–37.PubMedGoogle Scholar
  26. Horikawa K, Nakakuma H, Kawaguchi T, Iwamoto N, Nagakura S, Kagimoto T, & Takatsuki K. (1997) Apoptosis resistance of blood cells from patients with paroxysmal noctumal hemoglobinuria, aplastic anemia and myelodysplastic syndrome.Blood90:2716–2722.PubMedGoogle Scholar
  27. Hotta T. (1997) Clonality in hematopoietic disorders.International Journal of Hematology66:403–412.PubMedCrossRefGoogle Scholar
  28. Jandl JH. (1996) Textbook of Hematology. Second Edition, Little Brown & Co. pp. 830.Google Scholar
  29. Janssen JWG, Buschle M, Layton M, Drexler HG, Lyons J, Van den Berghe H, Heimpel H, Kubanek B, Kleihauer E, Mufti GJ, & Bartram CR. (1989) Clonal analysis of myelodysplastic syndromes: Evidence of multipotent stem cell origin.Blood73:248–254.PubMedGoogle Scholar
  30. Jensen PD, Heickendroff L, Pederson B, Bendix-Hansen K, Jensen FT, Christensen T, Boesen AM, & Ellegaard J (1996). The effect of iron chelation on hematopoiesis in MDS patients with transfusion iron overload.British Journal of Haematology94: 288–299.PubMedCrossRefGoogle Scholar
  31. Jonasova A, Neuwirtova R, Cermak J, Vozobulova V, Mocikova K, Siskova M, & Hochova I (1998) Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anemias without hypoplastic bone marrow.British Journal of Haematology100: 304–309.PubMedCrossRefGoogle Scholar
  32. Kamp H, Fibbe WE, Jansen RPM, Van derKeur M, Graaff E, Willemze R, & Landegent JE. (1992) Clonal involvement of granulocytes and monocytes, but not of T and B lymphocytes and natural killer cells in patients with myelodysplasia: Analysis by x-linked restriction fragment length polymorphisms and polymerase chain reaction of the phosphoglycerate kinase gene.Blood80:1774–1780.PubMedGoogle Scholar
  33. Karp JE (1998) Molecular pathogenesis and targets for therapy in myelodysplastic syndrome (MDS) and MDS-related leukemias.Current Opinions in Oncology10: 3–9.CrossRefGoogle Scholar
  34. Kitagawa M, Yamaguchi S, Takahashi M, Tanizawa T, Hirokawa K, & Kamiyama R. (1998) Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia.Leukemia12:486–492.PubMedCrossRefGoogle Scholar
  35. Koike M, Ishiyama T, Tomoyasu S, & Tsuruoka N. (1995) Spontaneous cytokine overproduction by peripheral blood mononuclear cells from patients with myelodysplastic syndromes and aplastic anemia.Leukemia Research19:639–644.PubMedCrossRefGoogle Scholar
  36. List AF, Brasfield F, Heaton R, Glinsman-Gibson B, Crook L, Taetale R, & Capizzi R (1997)Blood90: 3364–3369.Google Scholar
  37. Michalova K, Musilova J, Zemanova Z, Czechoslovak MDS Cooperative Group. (1991) Consecutive chromosomal studies in patients with myelodysplastic syndrome (MDS).Annals of Genetics34:212–218.Google Scholar
  38. Molldrem JJ, Caples M, Mavroudis D, Plante M, Young NS, & Barrett AI (1997) Antithymocyte globulin for patients with myelodysplastic syndromes.British Journal of Haematology99: 699–705.PubMedCrossRefGoogle Scholar
  39. Moses A, Nelson J, & Bagby Jr GC (1998) The influence of human immunodeficiency virus-1 on hematopoiesisBlood91: 1479–1495.PubMedGoogle Scholar
  40. Mundle SD, Clark E, Alvi S, Venugopal P, Gezer S, Borok R, Shetty V, Chopra H, Hines C, Jassak P, Gregory SA, Robin E, Rifkin S, Alston D, Hernandez B, Shah R, & Raza A. (1996a) Spontaneous apoptosis in S-phase (Signal Antonymy): A characteristic in vivo feature of myelodysplasia.Proceedings of American Society of Clinical Oncology15:89, Abstract #21.Google Scholar
  41. Mundle SD, Venugopal P, Pandav DV, Broady-Robinson L, Gezer S, Robin EL, Rifkin SR, Klein M, Alston DE, Hernandez BM, Rosi D, Alvi S, Shetty VT, Gregory SA, & Raza A. (1996b) Indication of an involvement of interleukin-1 converting enzyme (ICE)-like protease in intramedullary apoptotic cell death in the bone marrows of patients with myelodysplastic syndromes (MDS).Blood88:2640–2647.Google Scholar
  42. Mundle S, Venugopal P, Shetty V, Ali A, Chopra H, Handa H, Rose S, Mativi BY, Gregory SA, Preisler HD, & Raza A. (1999) The relative extent and propensity of CD 34+ vs. CD34-cells to undergo apoptosis in myelodysplastic marrows.International Journal of Hematology, 69152–159.Google Scholar
  43. Mundle SD, Mativi BY, Cartlidge JD, Dangerfield B, Broady-Robinson L, Li B, Shetty V, Venugopal P, Gregory SA, Preisler HD, & Raza A. (2000) Signal antonymy unique to myelodysplastic marrows correlates with altered expression of E2F1.British Journal of Haematology109:376–381.PubMedCrossRefGoogle Scholar
  44. Nimer SD, Paquette RL, Ireland P, Testa T, Young D&Golde DW (1994) A phase I/II study of interleukin-3 in patients with aplastic anemia and myelodysplasia. Experimental Hematology, 22: 875–880.PubMedGoogle Scholar
  45. Ohmori M, Ohmori S, Ueda Y, Yoshida Y, & Okuma M. (1991) Ineffective hematopoiesis in myelodysplastic syndromes (MDS) as studied by daily in situ observation of colony-cluster formation.International Journal of Cell Cloning5:521–530.CrossRefGoogle Scholar
  46. Ohno R (1994) Differentiation therapy of myelodysplastic syndromes with retinoic acid.Leukemia and Lymphoma14: 401–409.PubMedCrossRefGoogle Scholar
  47. Ohyashiki K, Iwabuchi A, Sasao I, Ohyashiki JH, Ito H, & Toyama K. (1993) Clinical and cytogenetic significance of myelodysplastic syndromes with disease evolution.Cancer Genetics and Cytogenetics67:71–79.PubMedCrossRefGoogle Scholar
  48. Peddie CM, Wolf CR, McLellan LI, Collins AR, & Bowen DT. (1997) Oxidative DNA damage in CD34` myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-concentration.British Journal of Haematology99:625–631.PubMedCrossRefGoogle Scholar
  49. Rajapaksa R, Ginzton N, Ron LS, & Greenberg PL. (1996) Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells.Blood88:4275–4287.PubMedGoogle Scholar
  50. Raza A, Mundle S, Iftikhar A, Gregory S, Marcus B, Khan Z, Alvi S, Shetty V, Dameron S, Wright V, Adler S, Loew J, Schott S, Ali N, & Preisler H. (1995a) Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis.American Journal of Hematology48:143–154.CrossRefGoogle Scholar
  51. Raza A, Gezer S, Mundle S, Gao X-Z, Alvi S, Borok R, Rifkin S, Iftikhar A, Shetty V, Parcharidou A, Loew J, Marcus B, Khan Z, Chaney C, Showel J, Gregory S, & Preisler H. (1995b) Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes.Blood86:268–276.Google Scholar
  52. Raza A, Gregory SA, & Preisler HD. (1996a). The myelodysplastic syndromes in 1996: Complex stem cell disorders confounded by dual actions of cytokines.Leukemia Research20:881–890.CrossRefGoogle Scholar
  53. Raza A, Mundle S, Shetty V, Alvi S, Chopra H, Dar S, Venugopal P, Borok R, Gezer S, Showel J, Robin E, Rifkin S, Alston D, Hernandez B, & Gregory S. (1996b) Novel insights into the biology of myelodysplastic syndromes: Excessive apoptosis and the role of cytokines.International Journal of Hematology63:265–278.CrossRefGoogle Scholar
  54. Raza A, Mundle S, Shetty V, Alvi S, Chopra H, Span L, Parcharidou A, Dar S, Venugopal P, Borok R, Gezer S, Showel J, Loew J, Robin E, Rifkin S, Alston D, Hernandez B, Shah R, Kaizer H, & Gregory S. (1996c) A paradigm shift in myelodysplastic syndromes.Leukemia 10:1648–1652. Google Scholar
  55. Raza A, Alvi S, Broady-Robinson L, Showel M, Cartlidge J, Mundle SD, Shetty V, Borok RZ, Dar SE, Chopra HK, Span L, Parcharidou A, Hines C, Gezer S, Venugopal P, Loew J, Showel J, Alston D, Hernandez B, Rifkin S, Robin E, Shah R, & Gregory S. (1997a) Cell cycle kinetic studies in 68 patients with myelodysplastic syndromes following intravenous iodo-and/or bromodeoxyuridine.Experimental Hematology25: 530–535.Google Scholar
  56. Raza A, Alvi S, Borok RZ, Span L, Parcharidou A, Alston D, Riflcin S, Robin E, Shah R, & Gregory SA. (1997b) Excessive proliferation matched by excessive apoptosis in myelodysplastic syndromes: The cause-effect relationship.Leukemia and Lymphoma27:111–118.Google Scholar
  57. Raza A, Venugopal P, Gezer S, Gregory S, Dong LM, Leurgens S, Mundle SD, Shetty VT, Alvi S, Ali A, Span L, Dar SE, Hines C, Hsu WT, Loew J, Borok RZ, Hernandez B, Robin E, Rifkin S, Alston D, Shah R, & Preisler HD. (1998) Pilot study of Pentoxifylline and Ciprofloxacin with or without Dexamethasone produces encouraging results in myelodysplastic syndromes. Acute Leukemias VII: Experimental Approaches and Novel Therapies published by Springer-Verlag Berlin Heideberg, New York, (eds) W. Hiddemann, T. Buchner, B. Wormann, J. Ritter, U. Creutzig, Keating M, Plunkett W, pp 42–51.Google Scholar
  58. Raza A, Lisak L, Andrews C, Little L, Muzammil M, Alvi S, Mazzoran L. Zorat F, Akber A, Ekbal M, Razvi S, & Venugopal P. (1999) Thalidomide produces transfusion independence in patients with long-standing refractory anemias and myelodysplastic syndromes (MDS).Proceedings of American Society of Clinical Oncology15:89, Abstract #21.Google Scholar
  59. Raza A, Qawi H, Lisak L, Andric T, Dar S, Andrews C, Venugopal P, Gezer S, Gregory S, Loew J, Robin E, Rifkin S, Hsu W-T, & Huang R-W. (2000a) Patients with myelodysplastic syndromes benefit from palliative therapy with Amifostine, Pentoxyfylline, and Ciprofloxacin with or without Dexamethasone.Blood95:1580–1587.Google Scholar
  60. Raza A. (2000b) Anti-TNF therapies in Rheumatoid Arthritis, Crohn’s Disease, Sepsis and Myelodysplastic Syndromes.Microscopy Research and Techchnique50:229–235.CrossRefGoogle Scholar
  61. Raza A. (2000e) Consilience across evolving dysplasias affecting myeloid, cervical, esophageal, gastric and liver cells: Common themes and emerging patterns.Leukemia Research24:63–72.CrossRefGoogle Scholar
  62. Richert-Boe KE, & Bagby CG Jr. (1992) In vitro hematopoiesis in myelodysplasia: Liquid and soft-gel culture studies.Hematology Oncology Clinical North America6:543–556.Google Scholar
  63. Rubin CM, Larson RA, Anastasi J, Winter TN, Thangavelu M, Vardiman JW, Rowley JD, Le & Beau MM. (1990) t(3;21)(g26;g22): A recurring chromosomal abnormality in therapy-related myelodysplastic syndrome and acute myeloid leukemia.Blood76:2594–2598.Google Scholar
  64. Saarni MI, & Linman JW. (1973) Preleukemia: The hematologic syndrome preceding acute leukemia.American Journal of Medicine55:38–48.PubMedCrossRefGoogle Scholar
  65. Schmetzer HM, Poleck B, Mittermuller J, Duell T, Wilmanns W, & Gerhartz HH. (1997) Clonality analysis as a tool to study the biology and response to therapy in myelodysplastic syndromes.Leukemia11:660–666.PubMedCrossRefGoogle Scholar
  66. Shetty V, Mundle S, Alvi S, Showel M, Broady-Robinson L, Dar S, Borok R, Showel J, Gregory S, Rifkin S, Gezer S, Parcharidou A, Venugopal P, Shah R, Hernandez B, Klein M, Alston D, Robin E, Dominguez C, & Raza A. (1996) Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes.Leukemia Research20:891–900.PubMedCrossRefGoogle Scholar
  67. Tennant GB, Walsh V, Truran LN, Edwards P, Mills KI, & Burnett AK. (2000) Abnormalities of adherent layers grown from bone marrow of patients with myelodysplasia.British Journal of Haematology3:853–862.Google Scholar
  68. Verhoef GEG, De Schouwer P, Ceuppens JL, Van Damme J, Goossens W, & Boogerts MA. (1992) Measurement of serum cytokine levels in patients with myelodysplastic syndromes.Leukemia6:1268–1272.PubMedGoogle Scholar
  69. Verhoef GE&Googaerts MA. (1996) Cytogenetics and its prognostic value in myelodysplastic syndromes. Acta Haematologica, 95:95–101.PubMedCrossRefGoogle Scholar
  70. West RR, Stafford DA, White DT, & Padua RA. (2000) Cytogenetic abnormalities in the myelodysplastic syndromes and occupational or environmental exposure.Blood95:2093–2097.PubMedGoogle Scholar
  71. White AD, Culligan DJ, Hoy TG, & Jacobs A. (1992) Extended cytogenetic follow-up of patients with myelodysplastic syndrome (MDS).British Journal of Haematology81:499–502.PubMedCrossRefGoogle Scholar
  72. Wijermans PW, Krulder JW, Huijens PC, & Neve P. (1997) Continuous infusion of low dose 5-aza-2-deoxycytidine in elderly patients with high risk myelodysplastic syndromes.Leukemia 11: 19–23.CrossRefGoogle Scholar
  73. Zoumbos N, Symeonidis A, Kourakli A, Katevas P, Matsouka P, Perraki M, & Georgoulias V. (1991) Increased levels of soluble interleukin-2 receptors and tumor necrosis factor in serum of patients with myelodysplastic syndromes.Blood77:413–414.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Azra Raza
    • 1
  1. 1.MDS Center and Section of Myeloid Diseases, Department of MedicineRush UniversityChicago

Personalised recommendations