Gated Myocardial Perfusion Spect for Diagnosis and Prognosis of Patients with Coronary Artery Disease

  • Daniel S. Berman
  • Sean W. Hayes
  • Rory Hachamovitch
  • Howard Lewin
  • Leslie Shaw
  • Guido Germano
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 235)

Abstract

The application of cost-effective strategies for the diagnosis and risk stratification of patients with coronary artery disease (CAD) is a key issue in the practice of cardiology today. Although medical and surgical therapies have led to an overall decrease in mortality from acute coronary events since the 1960s1, myocardial infarction (MI) remains the Ieading cause of death in the United States.2 Significantly, 50% of men and 63% of women dying suddenly from acute coronary events have not previously been identified as having CAD.2 At the same time, many patients with clear signs and symptoms of CAD do not go on to experience acute coronary events.

Keywords

Ischemia Aspirin Adenosine Radionuclide Stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McGovern PG, Pankow IS, Shahar E, et al. Recent trends in acute coronary heart disease—mortality, morbidity, medical care, and risk factors. The Minnesota Heart Survey Investigators. N Engl J Med 1996;334:884–890. PubMedCrossRefGoogle Scholar
  2. 2.
    AHA. 1999 Heart and Stroke Statistical Update. Dallas, Texas: American Heart Association, 1999.Google Scholar
  3. 3.
    Ritchie JL, Bateman TM, Bonow RO, et al. Guidelines for clinical use of cardiac radionuclide imaging. Report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Radionuclide Imaging), developed in collaboration with the American Society of Nuclear Cardiology. Journal of the American College of Cardiology 1995;25:521–547.PubMedCrossRefGoogle Scholar
  4. 4.
    Strauss HW, Miller DD, Wittry MD, et al. Procedure guideline for myocardial perfusion imaging. Society of Nuclear Medicine. Journal of Nuclear Medicine. 1998.Google Scholar
  5. 5.
    Gibbons R, Chatterjee K, Daley J, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina. J Am Coll Cardiol 1999;33:2092–2197.PubMedCrossRefGoogle Scholar
  6. 6.
    Berman DS, Kiat H, Van Train K, Garcia E, Friedman J, Maddahi J. Technetium 99m sestamibi in the assessment of chronic coronary artery disease. Semin Nucl Med 1991;21:190–212.PubMedCrossRefGoogle Scholar
  7. 7.
    Berman DS, Kiat H, Friedman JD, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol 1993;22:1455–1464.PubMedCrossRefGoogle Scholar
  8. 8.
    Amanullah AM, Kiat H, Friedman JD, Berman DS. Adenosine technetium-99m sestamibi myocardial perfusion SPECT in women: diagnostic efficacy in detection of coronary artery disease. JAm Coll Cardiol 1996;27:803–809.CrossRefGoogle Scholar
  9. 9.
    Verani M. Stress Approaches: Techniques. In: Pohost G, Berman D, O’Rourke R, Shah P, eds. Imaging in Cardiovascular Disease. New York: Lippencott Williams & Wilkins, 2000.Google Scholar
  10. 10.
    Germano G, Berman DS. Clinical Gated Cardiac SPELT. Armonk, NY: Futura Publishing Company, 1999.Google Scholar
  11. 11.
    Berman DS, Hachamovitch R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. JAm Coll Cardiol 1995;26:639–647.CrossRefGoogle Scholar
  12. 12.
    Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996;93:905–914.PubMedCrossRefGoogle Scholar
  13. 13.
    . Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994;35:609–618.PubMedGoogle Scholar
  14. 14.
    Sharir T, Germano G, Waechter PB, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. J Nucl Med 2000;41:720–727.PubMedGoogle Scholar
  15. 15.
    Berman DS, Germano G, Kiat H, Friedman J. Simultaneous perfusion/function imaging [editorial]. J Nucl Cordial 1995;2:271–273.CrossRefGoogle Scholar
  16. 16.
    . Chua T, Kiat H, Germano G, et al. Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability. Correlation with echocardiography and rest thallium-201 scintigraphy. JAm Coll Cordial 1994;23:1107–1114.CrossRefGoogle Scholar
  17. 17.
    . DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated tcchnetium-99m-sestamibi SPECT. J Nucd Med 1993;34:1871–1876.Google Scholar
  18. 18.
    Germano G, Kiat H, Kavanagh PB, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT.JNucl Med 1995;36:2138–2147.Google Scholar
  19. 19.
    Germano G, Erel J, Lewin H, Kavanagh PB, Berman DS. Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1997;30:1360–1367.PubMedCrossRefGoogle Scholar
  20. 20.
    Mazzanti M, Germano G, Kiat H, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. JAm Coil Cardiol 1996;27:1612–1620.CrossRefGoogle Scholar
  21. 21.
    Germano G, Brel J, Kiat H, Kavanagh PB, Berman DS. Quantitative LVEF and qualitative regional function from gated thallium-201 perfusion SPECT. J Nucl Med 1997;38:749–754.PubMedGoogle Scholar
  22. 22.
    Beller GA. Selecting patients with ischemic cardiomyopathy for medical treatment, revascularization, or heart transplantation. J Nuel Cordial 1997;4:5152–157Google Scholar
  23. 23.
    Diamond GA, Pollock BH, Work JW. Clinician decisions and computers. J Am Coll Cardiol 1987;9:1385–1396.PubMedCrossRefGoogle Scholar
  24. 24.
    Berman DS, Kiat H, Friedman JD, Diamond G. Clinical applications of exercise nuclear cardiology studies in the era of healthcare reform,American Journal of Cardiology1995:75:3D–13D.PubMedCrossRefGoogle Scholar
  25. 25.
    Hachamovitch R, Berman DS, Molise AP, Diamond GA. Statistical, epidemiological and fiscal issues in the evaluation of patients with coronary artery disease. Quarterly Journal of Nuclear Medicine 1996;40:35–46.PubMedGoogle Scholar
  26. 26.
    . Berman DS, Hachamovitch R. Risk assessment in patients with stable coronary artery disease: incremental value of nuclear imaging. J Miel Cordial 1996;3:541–49.Google Scholar
  27. 27.
    Berman D, Hachamovitch R, Lewin H, Friedman J, Shaw L, Germano G. Risk stratification in coronary artery disease: implications for stabilization and prevention. Am J Cardiol 1997;79: 10–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Bateman TM, O’Keefe JH, Jr., Dong VM, Barnhart C, Ligon RW. Coronary angiographic rates after stress single-photon emission computed tomographie scintigraphy. J Nuel Cardiol 1995;2:217–223.CrossRefGoogle Scholar
  29. 29.
    Nallamothu N, Pancholy SB, Lee KR, Heo J,Iskandrian AS. Impact on exercise single-photon emission computed tomographie thallium imaging on patient management and outcome.JNuci Cardinl 1995;2:334–338.Google Scholar
  30. 30.
    Hachamovich R, Berman D, Shaw L, Kiat H, Cohen I, Friedman J. SPECT in asymptomatic patients: Incremental prognostic value and risk stratification. J Nuel Cardiol 1997;4:S99 (abst).Google Scholar
  31. 31.
    Shaw U., Heller GV, Travin MI, et al. Cost analysis of diagnostic testing for coronary artery disease in women with stable chest pain. Economics of Noninvasive Diagnosis (END) Study Group. J Nuel Cardiol 1999;6:559–569.CrossRefGoogle Scholar
  32. 32.
    Shaw Li, Hachamovitch R, Berman DS, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization isehemia. J Am Coll Cardiol 1999;33:661–669.CrossRefGoogle Scholar
  33. 33.
    Hachamovitch R, Berman DS, Kiat H, et al. Effective risk stratification using exercise myocardial perfusion SPECT in women: gender-related differences in prognostic nuclear testing. JAm Coll Cardiol 1996;28:34–44.CrossRefGoogle Scholar
  34. 34.
    . Gibson RS, Watson DD, Craddock GB, et al. Prediction of cardiac events after uncomplicated myocardial infarction: a prospective study comparing predischarge exercise thallium-201 scintigraphy and coronary angiography. Circulation 1983;68:321–336.PubMedCrossRefGoogle Scholar
  35. 35.
    Leppo JA, O’Brien J, Rothendler JA, Getchell JD, Lee VW. Dipyridamole-thallium-201 scintigraphy in the prediction of future cardiac events after acute myocardial infarction. N EnglJMed 1984;310:1014–1018.CrossRefGoogle Scholar
  36. 36.
    Mahmarian JJ, Pratt CM, Nishimura S, Ahreu A, Verani MS. Quantitative adenosine 20111 single-photon emission computed tomography for the early assessment of patients surviving acute myocardial infarction. Circulation 1993;87:1197–1210.PubMedCrossRefGoogle Scholar
  37. 37.
    Brown KA, Heller GV, Landin RS, et al. Early dipyridamole Tc-99m SPECT imaging after acute myocardial infarction predicts in-hospital and post-discharge cardiac events: Comparison with submaxirnal exercise imaging. Circulation 1999;100:2026–2066.Google Scholar
  38. 38.
    Braunwald E, Jones RH, Mark DB, et al. Diagnosing and Managing Unstable Angina. Circulation 1994;90:613–622.PubMedCrossRefGoogle Scholar
  39. 39.
    Eagle KA, Brundage BH, Chaitman BR, et al. Guidelines for perioperative cardiovascular evaluation for noncardiac surgery. Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). J Am Coll Cardiol 1996;27:910–948.PubMedCrossRefGoogle Scholar
  40. 40.
    Lewin H, Hachamovitch R, Cohen I, Kang X, Friedman J, Berman D. Stress SPECT in patients more than five years following bypass surgery: incremental prognostic value and risk stratification. J Nucl Med 1997;38:40–41 p (abst).Google Scholar
  41. 41.
    . Palmas W, Bingham S, Diamond GA, et al. Incremental prognostic value of exercise thallium-201 myocardial single-photon emission computed tomography late after coronary artery bypass surgery. JAm Coll Cardiol 1995;25:403–409.CrossRefGoogle Scholar
  42. 42.
    Berman DS, Kang X, Van Train KF, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1998;32: 1987–1995.PubMedCrossRefGoogle Scholar
  43. 43.
    Hachamovitch R, Berman D, Lewin H, Cohen I, Friedman D, Germano G. Incremental prognostic value of gated SPECT ejection fraction in patients undergoing dual-isotope exercise or adenosine stress SPECT. JAm Coll Cardiol 1998;31:441A (abst).Google Scholar
  44. 44.
    Sharir T, Bacher-Stier C, Lewin H, et al. Identification of severe and extensive coronary artery disease by post-exercise regional wall motion abnormalities in Tc-99m sestamibi gated single photon emission computed tomography. Am J Cardiol 2000 (in press).Google Scholar
  45. 45.
    Weiss AT, Berman DS, Lew AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. JAm Coll Cordial 1987;9:752–759.CrossRefGoogle Scholar
  46. 46.
    Morise AP. An incremental evaluation of the diagnostic value of thallium single-photon emission computed tomographie imaging and lunglheart ratio concerning both the presence and extent of coronary artery disease. J Nuci Cordial 1995;2:238–245.CrossRefGoogle Scholar
  47. 47.
    Bacher-Stier C, Kavanagh P, Sharir T, et al. Post-exercise tc-99m sestamibi lung uptake determined by a new automatic technique. JNucl Med 1998;39:104P (abst).Google Scholar
  48. 48.
    Johnson LL, Verdesca SA, Aude WY, et al. Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. JAm Coll Cardiol 1997;30:l641–1548.CrossRefGoogle Scholar
  49. 49.
    , Sharir T, Germano G, Kavanagh K, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100:1035–1042PubMedCrossRefGoogle Scholar
  50. 50.
    Sharir T, Germano G, Lewin HC, et al. Prognostic value of myocardial perfusion and function by gated SPECT in the prediction of non-fatal myocardial infarction and cardiac death. Circulation 1999;100:I-383 (abst).Google Scholar
  51. 51.
    Hachamovitch R, Berman DS, Shaw W, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97:535–543.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Daniel S. Berman
    • 1
  • Sean W. Hayes
    • 1
  • Rory Hachamovitch
    • 1
  • Howard Lewin
    • 1
  • Leslie Shaw
    • 1
  • Guido Germano
    • 1
  1. 1.Cedars-Sinai Medical centerLos AngelesUSA

Personalised recommendations