Mechanisms of Lung Epithelial Cell Injury by Pseudomonas Aeruginosa

  • Jeanine P. Wiener-Kronish
  • Dara Frank
  • Teiji Sawa
Part of the Molecular and Cellular Biology of Critical Care Medicine book series (MCCM, volume 1)


The interactions between hosts and pathogens have evolved to select for gene combinations that can confer an advantage to either combatant. Bacteria have evolved several methods of inducing cell injury and are an important cause of acute lung injury (ALI). This review focuses on Pseudomonas aeruginosa, a soil bacterium that expresses many toxins that damage epithelial cells and can cause significant lung injury in critically ill patients (1). P. aeruginosa is rapidly becoming an important model system to better understand bacterial-host interactions leading to ALI. The recent sequencing and annotation of the P. aeruginosa genome will allow for microarray analyses to test the relevance of bacterial gene expression relative to host responses in several kinds of animal models. Moreover, the Pseudomonas research community already has a wealth of fundamental information regarding virulence gene and protein expression, and the delivery of toxic substances and enzymes to their cellular targets. Many laboratories are moving rapidly toward a phase where the individual virulence attributes, their expression, function, and regulation will be integrated into the biology of this metabolically and genetically versatile organism.


Lung Injury Pseudomonas Aeruginosa Acute Lung Injury Cystic Fibrosis Transmembrane Conductance Regulator Epithelial Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garrouste-Orgeas, M., Chevret, S., Arlet, G., Marie, O., Rouveau, M., Popoff, N., and Schlemmer, B. (1997) Oropharyngeal or gastric colonization and nosocomial pneumonia in adult intensive care unit patients. A prospective study based on genomic DNA analysis. Am J Respir Crit Care Med 156, 1647–1655PubMedGoogle Scholar
  2. 2.
    Fleiszig, S.M.J., Wiener-Kronish, J.P., Miyazaki, H., Vallas, V., Mostov, K.E., Kanada, D., Sawa, T., Yen, T.S., and Frank, D.W. (1997) Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 65, 579–586PubMedGoogle Scholar
  3. 3.
    Evans, D.J., Frank, D.W., Finck-Barbancon, V., Wu, C., and Fleiszig, S.M. (1998) Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity. Infect Immun 66, 1453–1459PubMedGoogle Scholar
  4. 4.
    Pier, G.B., Grout, M., and Zaidi, T.S. (1997) Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci USA 94, 12088–12093PubMedCrossRefGoogle Scholar
  5. 5.
    Sawa, T., Ohara, M., Kurahashi, K., Twining, S.S., Frank, D.W., Doroques, D.B., Long, T., Gropper, M.A., and Wiener-Kronish, J.P. (1998) In vitro cellular toxicity predicts Pseudomonas aeruginosa virulence in lung infections. Infect Immun 66, 3242–3249PubMedGoogle Scholar
  6. 6.
    Pearson, J.P., Feldman, M., Iglewski, B.H., and Prince, A. (2000) Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68, 4331–4334PubMedCrossRefGoogle Scholar
  7. 7.
    Stanislavsky, E. S. and Lam, J.S. (1997) Pseudomonas aeruginosa antigens as potential vaccines. FEMS Microbiology Reviews 21, 243–277PubMedCrossRefGoogle Scholar
  8. 8.
    Guzzo, J., Duong, F., Wandersoman, C., Murgier, M., and Lazdunski, A. (1991) The secretion genes of Pseudomonas aeruginosa alkaline are functionally related to those of Erwinia chrysanthemi proteases and Eschericial coli alpha-haemolysin. Mol Microbiol 5, 447–453PubMedCrossRefGoogle Scholar
  9. 9.
    Filloux, A., Bally, M. Ball, G., Akrim, M., Tommassen, J., and Lazdunski, A. (1990) Protein secretion in Gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria. EMBO J 9, 4323–4329PubMedGoogle Scholar
  10. 10.
    Pugsley, A.P. (1993) The general secretory pathway in Gram-negative bacteria. Microbiol Rev 57, 50–108PubMedGoogle Scholar
  11. 11.
    Yahr, T.L., Goranson, J., and Frank, D.W. (1996) Exoenzyme S of Pseudomonas aeruginosa is secreted by a Type III pathway. Mol Microbiol 22, 991–1003PubMedCrossRefGoogle Scholar
  12. 12.
    Parsek, M.R., Greenberg, E.P. (2000) Acyl-homoserine lactone quorum sensing in Gram-negative bacterial: A signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 91, 8789–8793CrossRefGoogle Scholar
  13. 13.
    Pearson, J.P., Gray, K.M., Passador, L., Tucker, K.D., and Eberhard, A. (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91,197–201PubMedCrossRefGoogle Scholar
  14. 14.
    Pesci, E. C., Milbank, J.B.J., Pearson, J.P., McKnight, S., Kende, A.S., Greenberg, E.P., and Iglewski, B.H. (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96, 11229–11234PubMedCrossRefGoogle Scholar
  15. 15.
    Passador L., Cook, J.M., Gambello, M.J., and Rust, L. (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260, 1127–1130PubMedCrossRefGoogle Scholar
  16. 16.
    Brint, J.M., and Ohman, D.E. (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RHIR-RhII, another set of regulators in strain PAOl with homology to the autoinducer-responsive LuxR-LuxI family. J Bact 177, 7155–7163PubMedGoogle Scholar
  17. 17.
    Darby, C., Cosma, C.L., Thomas, J.H., and Manoil, C. (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96, 15202–15207PubMedCrossRefGoogle Scholar
  18. 18.
    Mahajan-Miklos, S., Tan, M-W., Rahme, L.G., and Ausubel, F.M. (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96, 47–56PubMedCrossRefGoogle Scholar
  19. 19.
    Guiney, D.G. (1997) Regulation of bacterial virulence gene expression by the host environment. J Clin Invest 99, 565–569PubMedCrossRefGoogle Scholar
  20. 20.
    Costerton, J.W., Lewandowski, A., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M. (1995) Microbial biofilms. Annu Rev Microbiol 49, 711–745PubMedCrossRefGoogle Scholar
  21. 21.
    Costerton, J.W., Stewart, P., and Greenberg, E. (1999) Bacterial biofilms: A common cause of persistent infections. Science 284, 1318–1322PubMedCrossRefGoogle Scholar
  22. 22.
    Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298PubMedCrossRefGoogle Scholar
  23. 23.
    Singh, P.K., Schaefer, A.L., Parsek, M.R., Moninger, T.O., Welsh, M.J., and Greenberg, E.P. (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407: 762–764PubMedCrossRefGoogle Scholar
  24. 24.
    Rashid, M.H., Rumbaugh, K, Passador, L, Davies, D.G., Hamood, A.N., Iglewski, B.H., and Kornberg, A. (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97, 9636–9641PubMedCrossRefGoogle Scholar
  25. 25.
    Azghani, A.O., Bedinhaus, T., and Klein, R. (2000) Detection of elastase from Pseudomonas aeruginosa in sputum and its potential role in epithelial cell permeability. Lung 178, 181–189PubMedCrossRefGoogle Scholar
  26. 26.
    de Bentzmann, S., Polette, M., Zahm, J-M, Hinnrasky, J., Kileztky, C., Bajolet, O., Klossek, J.M., Filloux, A., Lazdunski, A., and Puchelle, E. (2000) Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing overactivation of epithelial matrix matalloproteinase-2. Lab Invest 80, 209–219PubMedCrossRefGoogle Scholar
  27. 27.
    Azghani, AO. (1996) Pseudomonas aeruginosa and epithelial permeability: role of virulence factors elastase and exotoxin A. Am J Respir Cell Mol Biol 15, 132–140PubMedGoogle Scholar
  28. 28.
    Cornelis, G.R., and Van Gijsegem, F. (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol 54, 735–74PubMedCrossRefGoogle Scholar
  29. 29.
    Macnab, R.M. (2000) Type III protein pathway exports Salmonella flagella. ASM News 66, 738–745Google Scholar
  30. 30.
    Gauthier, A, and Finlay, B.B. (1998) Protein translocation: delivering virulence into the host cell. Current Biol 8, R768-R770CrossRefGoogle Scholar
  31. 31.
    Yahr, T.L., Vallis, A.J., Hancock, M.K., Barbieri, J.T., and Frank, D.W. (1998) ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci USA 95, 13899–13904PubMedCrossRefGoogle Scholar
  32. 32.
    Yahr, T.L., Barbieri, J.T., and Frank, D.W. (1996) Genetic relationship between the 53- and 49-Kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol 178, 1412–1419PubMedGoogle Scholar
  33. 33.
    McGuffie, E.M., Frank, D.W., Vincent T.S., and Olson, J.C. (1998) Modification of Ras in Eukaryotic cells by Pseudomonas aeruginosa Exoenzyme S. Infect Immun 66, 2607–2613PubMedGoogle Scholar
  34. 34.
    Pederson, K.J., Vallis, A.J., Aktories, K., Frank, D.W., and Barbieri, J.T. (1999) The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Molec Micro 32, 393–401CrossRefGoogle Scholar
  35. 35.
    Wurtele, M., Wolf, E., Pederson, K.J., Buchwald, G., Ahmadian, M.R., Barbieri, J.T., and Wittinghofer, A. (2001) How the Pseudomonas aeruginosa ExoS toxin down-regulates Rac. Nat Struct Biol 8, 23–26PubMedCrossRefGoogle Scholar
  36. 36.
    Kudoh, I., Wiener-Kronish, J.P., Pittet, J.F., and Frank, D. (1994) Exoproduct secretions of Pseudomonas aeruginosa strains influence severity of alveolar epithelial injury. Am J Physiol (Lung, Cell, Mol Biol) 267, L551–L556Google Scholar
  37. 37.
    Knight, D.A., and Barbieri, J.T. (1997) Ecto-ADP-Ribosyltransferase activity of Pseduomonas aeruginosa exoenzyme S. Infect Immun 65, 3304–3309PubMedGoogle Scholar
  38. 38.
    Rumbaugh, K.P., Griswold, J.A., and Hamood, A.N. (1999) Pseudomonas aeruginosa strains obtained from patients with tracheal, urinary tract and wound infection: variations in virulence factors and virulence genes. J Hosp Infect 43, 211–218PubMedCrossRefGoogle Scholar
  39. 39.
    Finck-Barbançon, V., Yahr, T.L., and Frank, D.W. (1998) Identification and characterization of SpcU, a chaperone required for efficient secretion of the ExoU cytotoxin. J Bacteriol 180, 6224–6231PubMedGoogle Scholar
  40. 40.
    Sawa, T., Yahr, T.L., Ohara, M., Kurashashi, K., Gropper, M.A., Wiener-Kronish, J.P., and Frank, D.W. (1999) Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 5, 392–398PubMedCrossRefGoogle Scholar
  41. 41.
    Kurahashi, K., Kajikawa, O., Sawa, T., Ohara, M., Gropper, M.A., Frank, D.W., Martin, T.R., and Wiener-Kronish, J.P. (1999) Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 104, 743–750PubMedCrossRefGoogle Scholar
  42. 42.
    Wiener-Kronish, J.P., Sakuma, T., Kudoh, I., Pittet, J.F., Frank, D., Dobbs, L., Vasil, M.L., and Matthay, M.A. (1993) Alveolar epithelial injury and pleural empyema in acute P. aeruginosa pneumonia in anesthetized rabbits. J App Physiol 75, 1661–1669Google Scholar
  43. 43.
    Wiener-Kronish, J.P., Albertine, K.H., and Matthay, M.A. (1991) Differential effects of E. coli endotoxin on the lung endothelial and epithelial barriers of the lung. J Clin Invest 88: 864–875PubMedCrossRefGoogle Scholar
  44. 44.
    McElroy, M.C., Pittet, J.F., Hashimoto, S., Allen, L., Wiener-Kronish, J.P., and Dobbs, L.G. (1995) A type I cell specific protein is a biochemical marker of epithelial injury in a rat model of pneumonia. Am J Phys (Lung, Cell, Mol Biol) 268, L181–L186Google Scholar
  45. 45.
    Rajan, S., Cacalano, G., Bryan, R., Ratner, A.J., Sontich, C.U., van Heerckeren, A., Davis, P., and Prince, A. (2000) Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells. Am J Respir Cell Mol Biol 23, 304–312PubMedGoogle Scholar
  46. 46.
    Lee, A., Chow, D., Haus, B., Tseng, W., Evans, D., Fleiszig, S., Chandy, G., and Machen, T. (1999) Airway epithelial tight junctions and binding and cytotoxicity of Pseudomonas aeruginosa. Am J Physiol (Lung Cell Mol Physiol) 277, L204–L217Google Scholar
  47. 47.
    Hauser, A.R., and Engel, J.N. (1999) Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67, 5530–5537PubMedGoogle Scholar
  48. 48.
    Hafkemeyer, P., Brinkmann, U., Gottesman, M.M., and Pastan, I. (1999) Apoptosis induced by Pseudomonas exotoxin: a sensitive and rapid marker for gene delivery in vivo. Hum Gene Ther 10, 923–934PubMedCrossRefGoogle Scholar
  49. 49.
    Zaborina, O., Dhiman, N., Chen, M.L., Kostal, J., Holder, I.A., and Chakrabarty, A.M. (2000) Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microb 146, 2521–2530Google Scholar
  50. 50.
    Grassme, H., Kirschnek, S., Riethmueller, J., Riehle, A., von Kurthy, G., Lang, F., Weller, M., and Gulbins, E. (2000) CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290, 527–530PubMedCrossRefGoogle Scholar
  51. 51.
    Park, P.W., Pier, G.B., Preston, M.J., Goldberger, O., Fitzgerald, M.L., and Bernfield, M. (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem 275, 3057-3064PubMedCrossRefGoogle Scholar
  52. 52.
    Subramanian, S.V., Fitzgerald, M.L., and Bernfield, M. (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272, 14713–14720PubMedCrossRefGoogle Scholar
  53. 53.
    Sastry, K., and Ezekowitz, R.A. (1993) Collectins: pattern recognition molecules involved in first line host defense. Curr Opin Immunol 5, 59–66PubMedCrossRefGoogle Scholar
  54. 54.
    LeVine, A.M., Kurak, K.E., Bruno, M.D., Stark, J.M., Whitsett, J.A. and Korfhagen, T.R. (1998) Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 19, 700–708PubMedGoogle Scholar
  55. 55.
    Kabha, K., Schmegner, J., Keisari, Y., Parolis, H., Schlepper-Schaeffer, J., and Ofek, I. (1997) SP-A enhances phagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages. Am J Physiol 272, L344–L352PubMedGoogle Scholar
  56. 56.
    Greene, K.E., Wright, J.R., Steinberg, K.P., Ruzinski, J.T., Caldwell, E., Wong, W.B., Hull, W., Whitsett, J.A., Akino, T., Kuroki, Y., Nagae, H., Hudson, L.D., and Martin, T.R. (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 160, 1843–1850PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jeanine P. Wiener-Kronish
    • 1
    • 2
  • Dara Frank
    • 1
    • 2
  • Teiji Sawa
    • 1
    • 2
  1. 1.Department of Anesthesia and Perioperative CareUniversity of California at San FranciscoSan FranciscoUSA
  2. 2.Department of Microbiology and Molecular GeneticsMedical College of WisconsinMilwaukeeUSA

Personalised recommendations