Skip to main content

Abstract

Assuming that the “paradigm shift” in chip joining from peripheral wiring to area-array flip-chip technology is strategic for future electronics, there are immediate questions which emerge: Who will put bumps on chips and how? Will the same bumped chips be joined to both ceramic and organic packages? Must all chips be joined with high-melting or low-melting solders, or not with solder at all, but with conductive adhesives? This chapter will illustrate that there is presently great diversity in flip chip design and joining. There are reasonable arguments for doing essentially the same job in many different ways. You will find process and structure descriptions from numerous champions of the most prominent alternatives in chip joining without judgements or critiques as to what is good or bad. The marketplace is expected to be the ultimate sorting place which will accept some of the best, and reject others which fall short due to cost, manufacturability, reliability or functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. M. Davis, W. E. Harding, R. S. Schwartz and J. J. Corning, “Solid Logic Technology: Versatile, High Performance Microelectronics,” IBM J. Res. and Develop., 8, p. 102, 1964.

    Google Scholar 

  2. P. A. Totta and R. P. Sopher, “SLT Device Metallurgy and its Monolithic Extensions,” IBM J. Res. and Develop., 13, p. 226, May 1969.

    Google Scholar 

  3. L. E Miller, “Controlled Collapse Reflow Chip Joining,” IBM J. Res. and Develop., 13, p. 239, May 1969.

    Google Scholar 

  4. D. Callaway, Private Communication.

    Google Scholar 

  5. M. J. Sheaffer, “Wirebonding” subsection of Microelectronics Packaging Handbook, Second Edition, Tummala et al., New York: Chapman & Hall, 1997, pp. 11–186 to 11–217.

    Google Scholar 

  6. P. V. Robock and L. T. Nguyen, “Plastic Packaging,” Microelectronics Packaging Handbook, First Edition, Tummala et al., New York: Van Nostrand Reinhold, 1989, pp. 523–672.

    Google Scholar 

  7. B. T. Clark, “Design of the IBM Thermal-Conduction Module,” IEEE Hybrids Manuf Technol, CHMT-4, 1981.

    Google Scholar 

  8. R. C. Early, “Thick Film/Flip-Chips-A System Approach,” IEEE Trans. Mfg. Technol., vol. MFT-4, no. 1, p. 2, Sept. 1975.

    Google Scholar 

  9. D. L. Brownell and G. C. Waite, “Solder Bump Flip-Chip Fabrication Using Standard Chip and Wire Integrated Circuit Layout,” Part A, “Semiconductor Chip Attachment With Small Bump Flip-Chips,” Proc. ISHM Conf, p. 77,1974.

    Google Scholar 

  10. N. Nuzaki, K. Nakamura and I. Tsubokawa, “A Thick Film Active Filter for PCM Cornmunication Systems,” Proc. 28th Electronic Comp. Conf, p. 183, May 1978.

    Google Scholar 

  11. T. Kamei and M. Nakamura, “Hybrid IC Structures Using Solder Reflow Technology,” Proc. 28th Electronic Comp. Conf, pp. 172–182, May 1978.

    Google Scholar 

  12. T. Kawanobe, K. Miyamoto and Y. Inaba, “Solder Bump Fabrication By Electrochemical Method for Flip-Chip Interconnections,” Proc. 31st Electronic Comp. Conf., p. 149, May 1981.

    Google Scholar 

  13. C. J. Speerschneider and J. M. Lee, “Solder Bump Reflow Tape Automated Bonding,” Proceedings 2nd ASM International Materials and Processing Congress, pp. 7–12, 1989.

    Google Scholar 

  14. Y. Tsukada, “Surface Lamilar Circuit and Flip Chip Attach Packaging,” Proc. 42nd ECTC Conference, pp. 338–334, May 1990.

    Google Scholar 

  15. SIA Roadmap, Semiconductor Industry Assn., “The National Technology Roadmap for Semiconductors, (San Jose, CA), 1994 and 1997.

    Google Scholar 

  16. G. Adema, C. Berry, N. Koopman, G. Rinne, E. Yung and I. Turlik, “Flip-Chip Technology: A Method for Providing Known Good Die With High Density Interconnections,” 3rd International Conference and Exhibition on Multichip Modules, 1994.

    Google Scholar 

  17. P. Elenius, “Flex-on-Cap Solder Paste Bumping,” Proc. 47th ECTC, pp. 248–253, May 1997.

    Google Scholar 

  18. A. Ostmann, J. Kloesser and H. Reichl, “Implementation of a Chemical Wafer Bumping Process,” IEPS Conference Proceedings (San Diego, CA), pp. 354–366, Sept. 1996.

    Google Scholar 

  19. D. Hayes and D. Wallace, “Solder Jet Printing for Low Cost Wafer Bumping,” ISHM 1996 Proceedings, pp. 296–301, Oct. 1996.

    Google Scholar 

  20. K. Hatada, H. Fujumoto and T. Kawakita, “Insulation Resin Bonding: Chip on Substrate Assembly Technology,” ICICE, 1987.

    Google Scholar 

  21. Y. Bessho, Y. Tomura, Y. Hakotani and M. Tsukamoto, “Advanced Stud-Bump Bonding Technique for High Density MCM,” Proceedings of 1993 Japanese IEMT Symposium, pp. 362–365, June 1993.

    Google Scholar 

  22. L. Fanti and P. Totta, “IBM’s New C4 Bumping Process for Advanced Applications,” IMAPS 2nd International Advanced Technology Workshop on Low Cost Flip-Chip (Braselton, GA), Mar. 1998.

    Google Scholar 

  23. . R. Shukla, V. Murali and A. Bhansali, “Flip Chip CPU Package Technology at Intel: A Technology and Manufacturing Overview,” 49th ECTC Proceedings, pp. 945–949, June 1999.

    Google Scholar 

  24. S. E. Greer, “An Extended Eutectic Solder Bump For FCOB,” Proc. 46th ECTC (Orlando, FL), pp. 546–551, May 1996.

    Google Scholar 

  25. M. Warrior, “Reliability Improvements in Solder Bump Processing for Flip Chips,” Proc. 40th ECTC (Las Vegas, NV), pp. 460–69, May 1990.

    Google Scholar 

  26. LiLi, S. Wiegele, P. Thompson and R. Lee, “Stencil Printing Process for Low-Cost Flip-Chip Interconnect,” Proc. 48th ECTC, pp. 421–426, May 1998.

    Google Scholar 

  27. Y. Taguma, T. Uda, H. Ishida, T. Kobayashi and K. Nakata, “Application of D. C. Magnetron Sputtered Cr-Cu-Au Thin Films for Flip-Chip Solder Terminal Contacts,” 1991 IEPS Proceedings, p. 619, Sept. 1991.

    Google Scholar 

  28. N. Cherukuri, J. M. Liao, R. Denuit and K. Kawano, “A Pentium® Processor Based L/D MCM Test Vehicle: A Subsystem For Portable Applications,” ICE MCM Proceedings, pp. 1–5,1996.

    Google Scholar 

  29. J. Langdon, C. Karan, R. Pecoraro and P. Totta, “Vapor Depositing Solder,” (BLM/ Solder Unimask Process), Patent 3,401,055, Sept. 10, 1968.

    Google Scholar 

  30. E Barson and J. Sturm, US Patent No. 3, 410, 774, Nov. 12, 1968.

    Google Scholar 

  31. B. S. Berry and I. Ames, “Studies of SLT Chip Terminal Metallurgy,” IBM J. Res. and Develop., 13, p. 286, May 1969.

    Google Scholar 

  32. A. A. Liu, K. K. Kim, K. N. Tu and P. A. Totta, “Spalling of Cu6Sn5 Spheroids in the Soldering Reaction of Eutectic SnPb on Cr/Cu/Au Thin Films,” J. Appl. Phys. 80, p. 2774, 1996.

    Google Scholar 

  33. R. Richter and K. B. Kirtley, “The Pad Analysis System: A Successful Machine Vision System for Solder Ball Inspection,” Machine Vision Applications, Architectures and Systems Integration, B. C. Batchelok, S. S. Solomon and F. M. Waltz, eds.,Proc. SPIE 1823,pp. 233–244,1992.

    Google Scholar 

  34. R. P. Sopher and P. A. Totta, “Fluxless Soldering,” IBM Tech. Disclosure Bulletin, vol. 8, no. 11, p. 1543, Apr. 1966.

    Google Scholar 

  35. H. Dalal, K. Fallon and G. Gaudenzi, “Method of Making Direct Chip Attach to Circuit Card,” USP 5,634,268, June 3, 1997.

    Google Scholar 

  36. H. Dalal, K. Fallon, G. Gaudenzi and C. Milkovitch, “Method of Attaching a Flip Chip on Flexible Circuit Carrier Using Chip with Metallic Cap on Solder Ball,” USP, 5,729,896, March 24,1998.

    Google Scholar 

  37. S. E. Greer, “An Extended Eutectic Solder Bump for FCOB,” 1996 ECTC, p. 546, May 1996.

    Google Scholar 

  38. A. van der Drift, Philips Technology Review,34,1974.

    Google Scholar 

  39. T. Kawanobe, K. Miyamoto and Y. Inaba, “Solder Bump Fabrication by Electrochemical Method for Flip Chip Interconnection,” IEEE Electronics Components Conference, p. 149, May 1981.

    Google Scholar 

  40. E. K. Yung and I. Turlik, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 14, pp. 549–559, 1991.

    Google Scholar 

  41. G. M. Adema et al., Flip Chip Technology: A Method for Providing Known Good Die with High Density Interconnections, International Conference on Multichip Modules (Denver, CO), 1994.

    Google Scholar 

  42. J. Salonen and J. Salmi, “A Flip Chip Process Based on Electroplated Solder Bumps,” Physica Scripta, 1994.

    Google Scholar 

  43. M. F. Dautartas, in USPTO. AT&T, USA, 1995.

    Google Scholar 

  44. M. Datta et al., Journal of the Electrochemical Society 142, pp. 3779–3785, 1995.

    Google Scholar 

  45. H. A. Nye, J. F Roeder, H. M. Tong and P. A. Totta, in USPTO (International Business Machines, USA, 1996).

    Google Scholar 

  46. S. Bhattacharya, S. M. Hu, N. G. Koopman and C. C. Oldakowski, in USPTO (International Business Machines, USA, 1984).

    Google Scholar 

  47. H. Han, R. Boudreau and S. Tan, “Electroplated Solder Joints for Optoelectronic Applications,” Electronic Components Technology Conference (IEEE, 1996).

    Google Scholar 

  48. N. V. Mandich and G. A. Krulik, in Metal Finishing, pp. 25–27, 1992.

    Google Scholar 

  49. D. J. Levy, “Aspects of the Autocatalytic Plating Reaction,” Fiftieth Annual AES Convention, Atlantic City, NJ (American Electroplaters’ Society, 1963).

    Google Scholar 

  50. W. Riedel, Electroless Nickel Plating (Redwood Press, Melksham, England, 1991).

    Google Scholar 

  51. Z. Mei, D. Fisher, F. Hua and J. Glazer, “Interfacial Fracture Mechanism of BGA Packages on Electroless Ni/Au,” Advances in Electronic Packaging (ASME, 1997).

    Google Scholar 

  52. Flip Chip Technologies Web Site— http//:www.flipchip.com. http//:www.flipchip.com.

    Google Scholar 

  53. DOW Chemical, Technical Notes for Advanced Electronics Resins, p. 1.

    Google Scholar 

  54. M. Varnau and S. Yeh, “Impact of Under Bump Metallurgy on Flip Chip Reliability,” Flip Chip/BGA Workshop (Binghamton, NY), Oct. 1996.

    Google Scholar 

  55. C. Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D. R. Frear and P. Elenius, “Cross-sectional Scanning and Transmission Electron Microscopy of Interfacial Reaction between Eutectic SnPb and Cu/Ni(V)/Al Thin Film Metallization,” Journal of Applied Physics, 87, pp. 750–754, Jan. 2000.

    Google Scholar 

  56. F. Stepniak, “Estimating Flip Chip Reliability: Interactive Temperature-Dependent Failure Mechanisms Involving the Under-bump Metallurgy,” 1999 IMAPS Proceedings (Chicago, IL), Oct. 1999.

    Google Scholar 

  57. Z. Mei, M. Kaufmann, A. Eslambolchi and P. Johnson, “Brittle Interfacial Fracture of PBGA Packages Soldered to Electroless Nickel/Immersion Gold,” Proceeding of 48’ ECTC, pp. 952–995, 1998, and references therein.

    Google Scholar 

  58. A. Zribi, R. Chromik, J. Clum, K. Teed, L. Zavalij, J. DeVita, J. Tova and E. Cotts, “Solder Metallization Interdiffusion in Microelectronic Interconnects,” ECTC, 1999.

    Google Scholar 

  59. M. Varnau, “Impact of Wafer Probe Damage on Flip Chip Yields and Reliability,” International Electronics and Manufacturing Technology Symposium (Austin, TX), Oct. 1996.

    Google Scholar 

  60. CASTIN is a Trademark of the AIM Corporation.

    Google Scholar 

  61. Fatigue-Resistant Lead-Free Alloy U.S. Patent 5,938,862, 1999.

    Google Scholar 

  62. K. De Haven and J. Dietz, “Controlled Collapse Chip Carrier (C4) an Enabling Technology,” Proceedings of the 44th Electronic Components and Technology Conference (Washington D.C.), pp. 1–6, 1994.

    Google Scholar 

  63. L. F. Miller, “Controlled Collapse After Re-flow Chip Joining,” IBM J. Res. Develop., vol. 13, pp. 239–250, May 1969.

    Google Scholar 

  64. T. Oppert, E. Zakel and T. Teutsch, “A Roadmap to Low Cost Flip Chip and CSP Using Electroless Ni/Au,” Proceedings of the International Electronics Manufacturing Technology Symposium (Omiya, Japan), Apr. 15–17,1998.

    Google Scholar 

  65. M. Vrana, J. De Baets, A. Van Calster, D. Wojciechowski, A. Ostmann and H. Reichl, “An Anisotropic Adhesive Flip Chip Technology for LCD Drivers,” Proceedings of the SID Conference, 1996.

    Google Scholar 

  66. E Kasulke, W. Schmidt, L. Titerle, H. Bohnaker, T. Oppert and E. Zakel, “Solder Ball Bumper SB2-a Flexible Manufacturing Tool for 3-Dimensional Sensor and Microsystem Packages,” Proceedings of the 22 nd International Electronics Manufacturing Technology Symposium (Berlin), Apr. 27–29,1998.

    Google Scholar 

  67. G. Azdasht, L. Titerle, H. Bohnaker, P. Kasulke and E. Zakel, “Ball Bumping for Wafer Level CSP—Yield Study of Laser Re-flow and IR-Oven Reflow,” Proceedings of the Chip Scale International Conf. (San Jose CA), Sept. 14–15

    Google Scholar 

  68. T. Oppert, T. Teutsch, E. Zakel and D. Tovar, “A Bumping Process for 12” Wafers,“ Proceedings of the 24 th International Electronics Manufacturing Technology Symposium (Austin TX), pp. 328–333, Oct. 18–19, 1999.

    Google Scholar 

  69. D. B. Wallace, “A Method of Characteristics Model of a Drop-on-Demand Ink-Jet Device Using an Integral Method Drop Formation Model,” ASME publication 89-WA/FE-4, Dec. 1989.

    Google Scholar 

  70. J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia and U. E. Hess, “The Third Generation HP Thermal InkJet Print-head,” Hewlett-Packard Journal, vol. 45, no. 1, pp. 41–45, Feb. 1994.

    Google Scholar 

  71. D. B. Bogy and E E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices,” IBM Journ. Res. Develop., vol. 29, pp. 314–321,1984.

    Google Scholar 

  72. J. E Dijksman, “Hydrodynamics of Small Tubular Pumps,” Journ. Fluid Mech., vol. 139, pp. 173–191,1984.

    Google Scholar 

  73. D. B. Wallace, “Method and Apparatus for Forming Microdroplets of Liquids at Elevated Temperatures,” U.S. Patent 5,415,679, May 16, 1995.

    Google Scholar 

  74. D. J. Hayes, D. B. Wallace and M.T. Bold-man, Proceedings, “Solder Jet Printing for Low Cost Wafer Bumping,” Proceedings, ISHM ‘86, Minneapolis, Minn, pp. 296–301, October 1996.

    Google Scholar 

  75. J. M. Waldvogel, D. Poulikakos, D. B. Wallace and R. M. Marusak, “Transport Phenomena in Picoliter Size Solder Droplet Dispensing on a Composite Substrate,” ASME Journal of Heat Transfer, vol. 118, pp. 148–156, Feb. 1996.

    Google Scholar 

  76. N. van Veen and D. Schwarzbach, “Solderjetting, A Software Driven Technology for Maskless Wafer Bumping,” Proceedings, IMAPS International Symposium on Microelectronics (Chicago, IL), pp. 154–159, Oct. 1999.

    Google Scholar 

  77. C. W. Argento, T. Flynn and C. Demers, “Next Generation Solder Jetted Wafer Bumping for Very Fine Pitch Flip Chip Technology Applications and Beyond,” Proceedings, IMAPS International Symposium on Microelectronics (Chicago, IL), pp. 160–165, Oct. 1999.

    Google Scholar 

  78. H. Kristiansen et al., “Electrical and Mechanical Properties of Metal-coated Polymer Spheres for Anisotropic Conductive Adhesive,” PEP 99 (Gothenburg), pp. 63–71, Oct. 99.

    Google Scholar 

  79. R. Aschenbrenner, A. Ostmann, G. Motulla, K. F. Becker, E. Zakel and H. Reichert, “Flip Chip Interconnection to Glass Substrate Using Anisotropic Conductive Adhesives and Electroless Nickel Bumps,” Proc. Third International Conference on Adhesive Joining Technology in Electronics Manufacturing,“Adhesives in Electronics ‘86, pp. 258–269, June 1996.

    Google Scholar 

  80. V. Pennanen and O. Rusanen, “Reliability Testing on Flip-Chip Joining with Isotropically Conductive Adhesives,” to appear in Journal of Electronics Manufacturing, 1998.

    Google Scholar 

  81. J. B. Nysæther, K. Persson, Z. Lai and J. Liu, “Isotropically Conductive Adhesives for Flip-Chip on Board Circuits—Measurements of Life Time Under Thermal Cycling,” Proc. Third International Conference on Adhesive Joining Technology in Electronics Manufacturing “Adhesives in Electronics, pp. 125–131, Sept. 1998.

    Google Scholar 

  82. Z. Lai, J. Liu and K. Persson, “Solderless Flip-Chip Joining Using Conductive Adhesives on FR-4 and Flexible Circuitry,” IVF-report No. 98/15 (Final report in SFC-II), May 1998.

    Google Scholar 

  83. R. Estes and F. Kulesza, “Reliability of Smart Card/IC Modules Assembled Using Polymer Flip Chip (PFC) Packaging,” “Proc. Adhesives in Electronics ‘86, pp. 315–323, June 1996.

    Google Scholar 

  84. A. Miyajima, S. Morokawa, O. Yamada and M. Arai, “Small Liquid Crystal Display Device for Projection,” SPIE vol. 1255, Large-Screen Projection Displays II, pp. 46–51,1990.

    Google Scholar 

  85. W. Stijns, “Chip-on-Glass for LCD Modules with Totally Integrated Driver,” Electronic Components and Applications, vol. 10, no. 4, pp. 169–177,1992.

    Google Scholar 

  86. Y. Bessho, Y. Horio, T. Tsuda, T. Ishida and W. Sakurai, “Chip-on-Glass Mounting Technology of LSIs for LCD Module,” Proc. International Microelectronics Conf, pp. 183–89, May-June 1990.

    Google Scholar 

  87. X. Wang, Y. Wang, G. Chen, J. Liu and Z. Lai, “Quantitative Estimation of the Characteristics of Conductive Particles in ACA by Using Nano-Indentor,” Proc. First IEEE International Symposium on Polymeric Electronics Packaging (PEP ‘87) IEEE Catalogue number 97TH8268, pp. 101–106, Oct. 26–30, 1997, Also to be published in IEEE CPMT Transactions Part A, vol. 21, no. 2, June 1998.

    Google Scholar 

  88. I. Watanabe “ACA Flip-Chip Technology on Low-Cost Substrates” PEP 99 (Gothenburg), pp. 153–157, Oct. 1999.

    Google Scholar 

  89. J. Liu, Z. Lai, H. Kristiansen and C. Khoo, “Overview of Conductive Adhesive Joining Technology in Electronics Packaging Applications,” Proc. Third International Conference on Adhesive Joining Technology in Electronics Manufacturing `Adhesives in Electronics“, pp. 1–18, Sept. 1998.

    Google Scholar 

  90. S. Mannan, D. Williams, D. Whalley and Ogunjimi, “Models to Determine Guidelines for the Anisotropic Conductive Adhesives Joining Process,” Conductive Adhesives for Electronics Packaging, J. Liu ed., Electrochemical Publications Ltd, UK, 1998, Chapter 4.

    Google Scholar 

  91. Y. Fu, Y. Wang, X. Wang, J. Liu, Z. Lai, G. Chen and M. Willander, “Experimental Characterization and Theoretical Modeling of Electrical Contact in Anisotropic Conductive Adhesives,” submitted to IEEE CPMT transactions, Part B: Advanced Packaging, Sept. 1998.

    Google Scholar 

  92. K. Endoh, K. Nozawa and N. Hashimoto, “Development of ”The Maple Method“,” Proc. of the IEMT, pp.187–190,1993.

    Google Scholar 

  93. Casio, U.S. Patent 4,999,460, March 12, 1991.

    Google Scholar 

  94. Casio, U.S. Patent 5,123,986, June 23, 1992.

    Google Scholar 

  95. Casio, U.S. Patent 5,180,888, Jan. 19, 1993.

    Google Scholar 

  96. W. Takahashi, K. Murakoshi, J. Kanazawa, M. lkehata, Y. Iguchi and T. Kanamori, “Solderless COG Technology Using Anisotropic Conductive Adhesive,” Proc. International Microelectronics Conference (Yokohama), pp. 93–98, June 1992.

    Google Scholar 

  97. W. Takahashi, K. Murakoshi, J. Kanazawa, M. lkehata, Y. Iguchi and T. Kanamori, “Solderless COG Technology Using Anisotropic Conductive Adhesive,” Proc. International Microelectronics Conference (Yokohama), pp. 93–98, June 1992.

    Google Scholar 

  98. Hitachi Chemical, “Connecting Materials for COG,” technical report, Sept. 1994.

    Google Scholar 

  99. J. H. Lau, Flip-chip Technologies, McGraw-Hill, 1995, Chapter 3.

    Google Scholar 

  100. N. Yasuo and Y. Tetsuo, “Micro-film Connector for High Density Interconnection,” Electric Materials, pp. 28–35, Nov. 1992 (in Japanese).

    Google Scholar 

  101. J. Kivilahti and P Savolaien, “Design and Modeling of Solder-filled ACAs for Flip-Chip and Flexible Circuit Applications,” Conductive Adhesives for Electronics Packaging, J. Liu ed., Electrochemical Publications Ltd., UK, 1998, Chapter 7.

    Google Scholar 

  102. Gérard Diez, “En milliard kort,” ELEKTRONIK-edb og mennesker nr. 3, 1998 (in Swedish).

    Google Scholar 

  103. K. Persson, R. Rörgren, J. Liu and A. Junai, “A New Joining Process for Assembly of Integrated Circuits on Smart-Cards Using Fast UV-Curable Anisotropically Conductive Adhesives,” Research feasibility study report for a BRITE/EURAM CRAFT program, Contract No. BRST-CT-97–0469, Apr. 1998.

    Google Scholar 

  104. Electronics in Casio RF Transistor Radio Model MR80.

    Google Scholar 

  105. T. Nukii, N. Kakimoto, H. Atarashi, H. Matsubara, K. Yamamura and H. Hatsui, “LSI Chip Mounting Technology for Liquid Crystal Displays,” Proc. of International Symposium on Microelectronics, ISHM, pp. 257–262,1990.

    Google Scholar 

  106. Sharp, U.S. Patent 5,065,505, Nov. 19, 1991.

    Google Scholar 

  107. H. Atarashi, N. Kakimoto, H. Matsubara, K. Yamamura, T. Mukii and H. Matsui, “Chipon-Glass Technology Using Conductive Particles and Light-Setting Adhesives,” Proc. Of Japan International Electronic Manufacturing Technology Symposium, pp. 190–95, June 1990.

    Google Scholar 

  108. H. Matsubara, H. Atarashi, K. Yamamura, N. Kakimoto, K. Naitoh and T. Nukii, “Bare-Chip Face-Down Bonding Technology Using Conductive Particles and Light-Setting Adhesives: ELASTIC Method,” Proc. IMC 1992, pp. 81–87,1992.

    Google Scholar 

  109. M. Masuda, K. Sakuma, E. Satoh, Y. Yamasaki, H. Miyasaka and J. Takeuchi, “Chip on Glass Technology for Large Capacity and High Resolution LCD,” Proc. of International Electronic Manufacturing Technology Symposium, pp. 57–60, Apr. 1989.

    Google Scholar 

  110. K. Sakuma, K. Nozawa, E. Sato, Y. Yamasaki, K. Hanyuda, H. Miyasaka and J. Takeuchi, “Chip on Glass Technology with Standard Aluminized IC Chip,” Proc. of International Symposium on Microelectronics, ISHM, pp. 250–256,1990.

    Google Scholar 

  111. H. Otsuki, T. Kato, F Matsukawa, M. Nunoshita and H. Takasago, “Chip-on-Glass Packaging Technology Using Conductive Particles,” Proc IIWC 1992 (Yokohama), pp. 99–103,1992.

    Google Scholar 

  112. K. Hatada and H. Fujimoto, “A New LSI Bonding Technology Micron Bump Bonding Technology,” Proc. of the 39th. Elec- tronic Components Conference,pp. 45–49, May 1989.

    Google Scholar 

  113. K. Hatada, H. Fujimoto, T. Kawakita and T. Ochi, “A New LSI Bonding Technology ”Micron Bump Bonding“ Assembly Technology,” Proc. 5th IEEE/CHMT International Electronic Manufacturing Technology Symposium, pp. 23–27, Oct. 1988.

    Google Scholar 

  114. K. Hatada, H. Fujimoto, T. Kawakita and T. Ochi, “LED array modules by New Method Micron Bump Bonding Method,” Proc. 5th IEEE/CHMT International Electronic Manufacturing Technology Symposium, pp. 230–233, Oct. 1989.

    Google Scholar 

  115. B. Rosner, Johan Liu and Zonghe Lai, “Flip-Chip Bonding Using Isotropically Conductive Adhesives,” Proc. 46th ECTC, pp. 578581, May 1996.

    Google Scholar 

  116. J. Liu, Conductive Adhesives for Electronics Packaging, UK: Electrochemical Publications Ltd., 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl J. Puttlitz Paul A. Totta

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Totta, P. et al. (2001). Wafer Bumping. In: Puttlitz, K.J., Totta, P.A. (eds) Area Array Interconnection Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1389-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1389-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5529-8

  • Online ISBN: 978-1-4615-1389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics