Skip to main content

Tape Ball Grid Array

  • Chapter

Abstract

TAPE Ball Grid Array (TBGA) packages are a family of electronic chip carriers that utilize circuitized flex (tape) as the die carrier mounted to a printed circuit card or board. Previously this family of packages has been referred to by several designations, among them: Area Array Tape Automated Bonding (ATAB) [1], Tape Ball Grid Array (TBGA) [2], fleXBGA1 [3], Wire Bond TBGA (WB TBGA) [4], Signetics TBGA (S-TBGA) [5], Flex TBGA (FTBGA) [6], Star BGA [7]. TBGA is by far the most popular acronym utilized for this family of packages and adopted by the Joint Electronic Device Engineering Council of the Electronic Industry Association (JEDEC) for its standard package outlines [8]. Since the chip carrier is circuitized flex, it has been suggested that these packages more appropriately be referred to as Flex BGAs (FBGA) [9]. Since the standards refer to this package family as TBGAs, the terminology is adopted for this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Andros and R. Hammer, “Area Array TAB Technology,” ITAP ‘83 Proceedings (San Jose, CA), Feb. 1993.

    Google Scholar 

  2. F. Andros and R. Hammer, “TBGA Package Technology,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology—Part B, 17(4): pp. 564–568, Nov. 1994.

    Article  Google Scholar 

  3. R. Darveaux, “fleXBGA—A New IC Package Utilizing a Flex Circuit Substrate,” Proceedings of Flexcon ‘86, pp. 172–177, Oct. 23, 1996.

    Google Scholar 

  4. M Electronics Products Division, Flex Circuit Reduces Cost with Easy Integration into Manufacturing Infrastructure, Press Release (Austin, TX), Aug. 8,1997.

    Google Scholar 

  5. M. Karnezos, “High Performance Tape Ball Grid Array,” Flexible Circuitry International, pp. 10–11, Jan./Feb. 1998.

    Google Scholar 

  6. M. Karnezos, M. Goetz, E Dong, A. Ciaschi and N. Chidambaram, “Flex Tape Ball Grid Array,” Proc. 46th Electronic Components and Technology Conference (Orlando, FL), pp. 1271–1276, May 1996.

    Google Scholar 

  7. K. Wachtler, “BGA Product Drivers and Technical Solution Strategy,” International Flip Chip, Ball Grid Array, TAB and Advanced Packaging Symposium (Sunnyvale, CA), Feb. 14,1996.

    Google Scholar 

  8. JEDEC Standard JESD-30, “Tape Ball Grid 25. Array Family,” MO-149, Jan. 1998.

    Google Scholar 

  9. K. Gilleo, “Flex-Based Packaging,” Flexible Circuits Engineering, pp. 9–12, Apr./May 1997.

    Google Scholar 

  10. Amkor Technology, “Flex BGA Data Sheet:”http://www.amkor.com, Jan. 1999.

    Google Scholar 

  11. E. J. Vardaman, “What’s Driving Growth in Flex-Based IC Packages?” Flexible Circuitry and Electronic Packaging Technology, pp. 21–22, Jan./Feb. 1999. 27.

    Google Scholar 

  12. J. Fjelstad, “Flexible Circuits as an IC Packaging Medium,” Flexible Circuitry International, pp. 8, 29–30, May/June 1998.

    Google Scholar 

  13. S. Berry, “High Density IC Packaging Substrate Market,” HDI, 1(3): pp. 12–13, July 28. 1998.

    Google Scholar 

  14. “The Electronics Industry Report, 1997–1998,” Prismark Partners Ltd., Sept. 1997.

    Google Scholar 

  15. S. Berry, “Reaching HDI Comfort Levels,” HDI, 1(1): pp. 14–16, May 1998.

    Google Scholar 

  16. Personal communication with C. Kroger and E. J. Vardaman, Tech Search International, Inc., Dec. 1999.

    Google Scholar 

  17. J. Fjelstad, An Engineers Guide to Flexible Circuit Technology, Port Erin, Isle of Man, British Isles: Electrochemical Publications Ltd., 1997, pp. 100–123.

    Google Scholar 

  18. “3M Specifications and Design GuidelinesMicroflex Circuits for IC Interconnect Solutions,” 3M Electronics Products Division, Austin, TX, 1997.

    Google Scholar 

  19. M Electronics Products Division, 3M Microflex TBGA Design Guide Addendum (Austin, TX), 1997.

    Google Scholar 

  20. IBM Microelectronics, “Tape Ball Grid Array (TBGA) Product Specifications,” http://www.chips.ibm.com/products/interconnect/documents/sc/tbga.htm, Aug. 1998.

  21. Sheldahl Micro Products Design Guide, “ViathinTM Product Characteristics,”http://www.sheldahl.com/mpdg/mpdg6.htm, Aug. 1998.

  22. T. H. Stearns, Flexible Printed Circuitry, New York: McGraw Hill, 1995, pp. 86–100.

    Google Scholar 

  23. IBM Microelectronics, Precision Flex Operations, Marketing presentation, Endicott, NY, 1994.

    Google Scholar 

  24. C. Ernsberger, “High Density Multilayer Interconnect Based on Adhesiveless Flex Circuits,” Proc. of Flexcon ‘84, pp. 125–135, 1994.

    Google Scholar 

  25. R. D. Schueller, “Design Considerations for a Reliable Low Cost Tape Ball Grid Array Package,” Proc. of the 1995 International Electronics Packaging Conf. (San Diego, CA), pp. 595–607, Sept. 1995.

    Google Scholar 

  26. A. Domadia and D. Mendoza, “TBGA Bond Process for Ground and Power Plane Connections,” Proc. 46th Electronic Components and Technology Conference (Orlando, FL), pp. 707–711, May 1996.

    Google Scholar 

  27. J. Ewanich, M. Kobayashi and N. Izawa, “TBGA Design Improvements,” Proc. IPC/SMTA Ball Grid Array National Symposium (Bedford, MA), pp. 21–24, June 1997.

    Google Scholar 

  28. ASM International, Metals Handbook, Ninth Edition, Vol. 3, Properties and Selection: Stainless Steels, Tool Materials and Special Purpose Metals, Materials Park, OH: ASM International Press, 1989, pp. 34–35.

    Google Scholar 

  29. T. Gainey, M. Stoner, and M. Auray, “Reliability Evaluations on a New Tape Ball Grid Array (TBGA),” Proc. 46th Electronic Components and Technology Conference (Orlando, FL), pp. 1217–1221, May 1996.

    Google Scholar 

  30. F. Andros, J. Bupp, M. DiPietro and R. Hammer, “Method of Making an Electronic Package with a Thermally Conductive Support Member Having a Thin Circuitized Substrate and Semiconductor Device Bonded Thereto,” U.S. Patent 5,519,936, 1996.

    Google Scholar 

  31. R. D. Schueller and A. P. Plepys, “Design of a Low Cost Wire Bond Tape Ball Grid Array (TBGA) Package,” Proc. of the 1995 Surface Mount International Conf. (San Jose, CA), pp. 261–269, Aug. 1995.

    Google Scholar 

  32. C. J. Speerschneider, R. K. Spielberger and P. G. Brusius, “Tape Automated Bonding with Controlled Collapse Chip Connections,” Proc. IEPS (San Diego, CA), pp. 1345–1353, Sept. 1989.

    Google Scholar 

  33. R. Crowley, “Laser TAB Systems: A New Technology Implementation,” Microelectronics Manufacturing Technology, Mar. 1991.

    Google Scholar 

  34. S. K. Kang, W. T. Chen, R. Hammer and F. Andros, “Chip Level Interconnect: Wafer Bumping and Inner Lead Bonding,” Chip on Board Technologies for Multichip Modules, J. H. Lau, ed.,NewYork:Van Nostrand Rein-hold,1994,pp.186–223.

    Google Scholar 

  35. M. Bernier, “An Overview of TBGA Bond and Assembly Operations,” Proc. ‘85 Flip Chip, BGA,TAB and Advanced Packaging Symposium (San Jose, CA), pp. 65–67, Feb. 1995.

    Google Scholar 

  36. G. Derman, “Interconnects and Packaging,” Electronic Engineering Times, pp. 45, 60, Feb. 28,1994.

    Google Scholar 

  37. K. Tatsumi, T. Ando, Y. Ohno, M. Konda, Y. Kawakami, N. Ohikata and T. Maryuama, “Transferred Ball Bump Technology for Tape Carrier Packages,” Proc. International Symposium on Microelectronics (Boston, MA), pp. 54–59, Nov. 1994.

    Google Scholar 

  38. E. N. Larson and M. J. Brock, “Development of a Single Point Gold Bump Process for TAB Applications,” Proc. ICEMCM 93, pp. 391–397,1993.

    Google Scholar 

  39. C. J. Speerschneider and J. M. Lee, “Solder Bump Reflow Tape Automated Bonding,” Proc. 2nd ASM International Electronic Materials and Process Congress (Philadelphia, PA), pp. 7–12, Apr. 1989.

    Google Scholar 

  40. S. Anderson, “Solder Attach Tape Technology (SATT) Inner Lead Bonding Process Development,” Proc. 4th International TAB Symposium (San Jose, CA), pp. 158–172, Feb. 1992.

    Google Scholar 

  41. S. H. K. Lee, E. Law, M. Papageorge and J. Wu, “Ball Detachment Evaluation for Tape Ball Grid Array Packages,” Proc. SMI ‘88 (San Jose, CA), pp. 46–53, Aug. 1998.

    Google Scholar 

  42. D. Frear, S. Burchett, H. Morgan and J. Lau, The Mechanics of Solder Alloy Interconnects, New York: Van Nostrand Reinhold, 1994, pp. 60–63.

    Google Scholar 

  43. H. Shaukatullah and M. A. Gaynes, “Experimental Determination of the Effect of Printed Circuit Card Conductivity on the Thermal Performance of Surface Mount Electronic Packages,” Proc. 10th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (San Jose, CA), pp. 44–52, Feb. 1994.

    Google Scholar 

  44. H. Shaukatullah, F. E. Andros, M. A. Gaynes and C. P. Loveland, “Thermal Characterization of Tape Ball Grid Array Packages,” Proc. International Electronics Packaging Conference (Austin, TX), pp. 377–395, Sept. 1996.

    Google Scholar 

  45. C.C. Huang and A. Hamyehdoost, “Area Tape Automated Bonding Ball Grid Array Technology,” Ball Grid Array Technology, J. Lau, Ed., New York: McGraw-Hill, 1995, Chapter 14.

    Google Scholar 

  46. S. B. Sathe and B. G. Sammakia, “A Numerical Study of the Thermal Performance of a Tape Ball Grid Array (TBGA) Package,” Proc. ASME 31st National Heat Transfer Conference, Vol. 7, American Society of Mechanical Engineers, Heat Transfer Divisions HTD v 329, n 7, pp. 83–93, Aug. 1996.

    Google Scholar 

  47. J. Hwang, Modern Solder Technology for Competitive Electronics Manufacturing, McGraw-Hill, New York, pp. 57–121,1996.

    Google Scholar 

  48. M. Pecht, R. Agarwal, P. McClusky, T. Dishough, S. Janadpour, R. Mahajan. Electronic Packaging Materials and Their Properties, CRC Press, Boca Raton, 1999.

    Google Scholar 

  49. M. Karnezos, “S-TBGA: A Cost Effective Alternative to Enhanced PBGAs,” Proc. Nepcon West ‘88 (Anaheim, CA), pp. 1412–1423, Mar. 1998.

    Google Scholar 

  50. M. Karnezos, “Tab Grid Array,” U.S. Patent 5397921, Mar. 1995.

    Google Scholar 

  51. J. Geissinger, “Performance and Reliability of a Wire Bond Tape Ball Grid Array Package,” Electronic Packaging Symposium (Binghamton, NY), June 1997.

    Google Scholar 

  52. T. R. Lindley, `BGA Solder Joint Reliability Study for Automotive Electronics,“ Proc. ICEMCM ‘85 (Denver, CO), pp. 126–133, 1995.

    Google Scholar 

  53. K. T. Knadle, J. S. Perkins and J. A. Potenza, “Verifying a TBGA Card Assembly Process Using Innovative Reliability Tests and DOE,” Proc. Surface Mount International (San Jose, CA), pp. 402–410, Aug. 1995.

    Google Scholar 

  54. R. Darveaux, J. Heckman and A. Mawer, “Effect of Test Board Design on the 2nd Level Reliability of a Fine Pitch BGA Package,” Proc. Surface Mount International (San Jose, CA), pp. 105–111, Aug. 1998.

    Google Scholar 

  55. R. Darveaux and A. Mawer, “Solder Joint Fatigue Life of fleXBGA Assemblies,” Proc. 48th Electronic Components and Technology Conference (Portland, OR). pp. 707–712, June 1998.

    Google Scholar 

  56. T. Thompson, A. Carrasco, A. Mawer, “Reliability Assessment of a Thin (Flex) BGA Using a Polyimide Tape Substrate,” Proc. SMTA International (San Jose, CA), pp. 195–201, Sept. 1999.

    Google Scholar 

  57. P. Virpi, T. Markku, R. Tommi, Z. Jiansen, L. Wei, “TBGA Reliability in Telecom Environment,” Proc. SMTA International (San Jose, CA), pp. 221–228, Sept. 1999.

    Google Scholar 

  58. L. Yip, T. Massingill and H. Naini, “Moisture Sensitivity Evaluation of Ball Grid Array Packages,” Proc. 46th Electronic Components and Technology Conference (Orlando, FL), pp. 829–835, May 1996.

    Google Scholar 

  59. M. Otsuka, O. Yamagata, T. Imoto, T. Takano, K. Takahashi and H. Nakayoshi, “The Evaluation of High-reliability Adhesive Film for T-BGA,” Proc. 48th Electronic Components and Technology Conference (Portland, OR), pp. 1167–1172, June 1998.

    Google Scholar 

  60. T. Ohtaka, O. Yoshioka, H. Sugimoto, T. Ohmori, S. Suzuki, “High Thermal Performance Tape BGA for Media Processor,” Proc. SMTA International (San Jose, CA), pp. 211–217, Sept. 1999.

    Google Scholar 

  61. R. C. Lasky, A. Primavera, P. Borgeson and C. Lassen, “Critical Issues in Electronic Packag-ing, Part II,” Circuits Assembly, pp. 50–54, Jan. 1996.

    Google Scholar 

  62. EIA/JEDEC Standard, EIA/JESD22–A112A, “Moisture Induced Stress Sensitivity for Plastic Surface Mount Devices,” Nov. 1995.

    Google Scholar 

  63. Joint Industry Standard, IPC/JEDEC J-STD-020, “Moisture Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices,” Apr. 1999.

    Google Scholar 

  64. Joint Industry Standard, IPC/JEDEC J-STD-033, “Standard for Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices,” May 1999.

    Google Scholar 

  65. International Technology Roadmap for Semiconductors: Assembly and Packaging, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl J. Puttlitz Paul A. Totta

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andros, F. (2001). Tape Ball Grid Array. In: Puttlitz, K.J., Totta, P.A. (eds) Area Array Interconnection Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1389-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1389-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5529-8

  • Online ISBN: 978-1-4615-1389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics