Skip to main content

Abstract

Plastic Ball Grid Array (PBGA) packages are modules constructed utilizing standard printed circuit card and board technologies. The typical PBGA substrate is a thin (less than 0.035 inches) laminate similar to card technologies used for personal computers. Although the interconnections between a chip and substrate are typically wire bonds, flip-chip dice can be attached to PBGA packages as well. PBGA technologies also support chip scale packaging (CSP) discussed in Chapters 18 and 23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. JEDEC, Electronic Industries Association, 2500 Wilson Blvd.,Arlington Va, 22201–3834,http://www.JEDEC.org.

  2. Electronic Industries Association, JEDEC Outline MS-034 Plastic Ball Grid Array Family Registration, 2500 Wilson Blvd.,Arlington Va, 22201–3834, http://www.JEDEC.org.

  3. Electronic Industries Association, JEDEC Outline MO-192 Low Profile Ball Grid Array Family, 2500 Wilson Blvd.,Arlington Va,22201–3834,http://www.JEDEC.org.

  4. Electronic Industries Association, JEDEC STD 95–1–14 Ball Grid Array Package, 2500 Wilson Blvd.,Arlington Va,22201–3834,http://www.JEDEC.org.

  5. B. Freyman and R. Pennisi, “Overmolded Plastic Pad Array Carriers (OMPAC): A Low Cost, High Interconnect Density IC Packaging Solution for Consumer and Industrial Electronics,” 41st Proceedings Electronic Components and Technology Conference, pp. 176–182, May 1991.

    Google Scholar 

  6. S. E. Lindsey, J. Aday, B. Blood, Y. Guo, R. Hemann, J. Kellar, C. Koehler, J. Liu, V. Sarihan, T. Tessier, L. Thompson and E. Young, “JAGS-Pak(TM) Flip-Chip Chip Scale Package Development and Characterizations,” Procceedings 48th Electronic Components and Technology Conference, pp. 511–517, May 1998.

    Google Scholar 

  7. G. Smith, N. Androff, J. Gotro and B. Bedwell, “Advanced Laminate for High Density Interconnect Substrates,” Proceedings Semicon West (San Jose, CA), Session 6, pp. Al—A9, July 1999.

    Google Scholar 

  8. S. Ouimet, J-G. Quintal and G. Robichard, “Wirebonding PBGA Manufacturing Challenges from Fine to Ultrafine Pitch, ” Proceedings SEMI Semiconductor Packaging Symposium, SEMICON West (San Jose, CA) pp. Dl—D9, July 1998.

    Google Scholar 

  9. M. J. Kuzawinski and K. J. Blackwell, “Ultra Fine Pitch Wire Bond PBGA’s,” Electronic Packaging and Production, vol. 37 (12), pp. 56–62, Sept. 1997.

    Google Scholar 

  10. I. Memis, “MicroBGA on Printed Wiring Boards: Recognizing the Need for Surface Laminar Circuit(tm) MicroVia Capability,” Proceedings Semiconductor Packaging Symposium, Semicon West, pp. F-I—F-8, July 1998.

    Google Scholar 

  11. S. R. Tryzbiak and B. J. McDermott, “Photo-Defined Via Technology: Markets, Process and Applications,” Proceedings Semiconductor Packaging Symposium, Semicon West, pp. G-1—G-9, July 1998.

    Google Scholar 

  12. Peter Elenius, “Flip Chip Bumping for Fine Pitch Applications, ” Proceedings The Eleventh Annual Soldering Technology and Interconnection Symposium, Section 7, Oct. 1998.

    Google Scholar 

  13. M.J. Kuzawinski, “Ultra Fine Pitch Wire Bonds: Applications for the Future,” Proceedings Semicon West (San Jose, CA), Section III, pp. El—E9, July 1998.

    Google Scholar 

  14. Mark J. Kuzawinski, “High Density Wire Bond Packages: Chip Scale and Near Chip Scale PBGAs,” Proceedings International Conference and Exhibition on High Density Packaging and MCMs, pp. 169–174, Apr. 1999.

    Google Scholar 

  15. Electronic Industries Association, JEDEC JESD Standard 99 Glossary of Microelectronic Terms, Definitions and Symbols, 2500 Wilson Blvd., Arlington Va, 22201–3834, http://www.JEDEC.org.

  16. Electronic Industries Association, JEDEC STD A112-A Moisture Induced Stress Sensitivity for Plastic Surface Mount Devices, 2500 Wilson Blvd., Arlington Va, 22201–3834, http://www.JEDEC.org.

  17. Electronic Industries Association, JEDEC JESD Standard 51 High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages, 2500 Wilson Blvd., Arlington Va, 22201–3834, http://www.JEDEC.org.

  18. G. Harman, Reliability and Yield Problems of Wire Bonding in Microelectronics, Reston, VA., ISHM, 1991, p. 28.

    Google Scholar 

  19. T. R. Homa, “Reliability Evaluation of Fine Pitch Wire Bond PBGA’s,” Proceedings SEMI Semiconductor Packaging Symposium, SEMICON West (San Jose, CA), pp. A1—A5, July 1998.

    Google Scholar 

  20. T. R. Homa, “Reliability Evaluation of Laminate MultilayerUltra Fine Pitch Wire Bond Modules,” Proceedings SEMI Semiconductor Packaging Symposium, SEMICON West, pp. Dl—D12 (San Jose, CA).

    Google Scholar 

  21. Y. Pao, X. Song and T. Chung, “Thermal Fatigue of BGA Assemblies in Harsh Environments,” Proceedings SEMI Semiconductor Packaging Symposium, SEMICON West (San Jose, CA), B1—B18, July 1998.

    Google Scholar 

  22. M. J. Kuzawinski, “PBGA Products and Applications,” MicroNews, vol. 4(2), pp. 18–19, 2Q1998.

    Google Scholar 

  23. J. W. Wilson, R. D. Sebesta and A. D’Alisio, “Manufacturing Ultra Fine Line PBGA Substrates in A PWB Factory,” Proceedings ECTC, May 1999.

    Google Scholar 

Recommended Reading

  1. J. Korleski, R. Gorrell, C. Bowen and D. Nodding, “New Composite Organic Dielectric for High Performance Flip Chip Single Chip Packages,” Proceedings ECTC, May 1997.

    Google Scholar 

  2. T. Chung and I. Yee, “Wafer Level Packaging Technology,” Proceedings SEMICON West (San Jose, CA), Session 3, pp. A1—A8, July 1999.

    Google Scholar 

  3. M. Belazzouz and M. Jimarez, “Process Assembly Development for High Density ASIC Flip Chip/Plastic Ball Grid Array Packages,” Proceedings SEMICON West (San Jose, CA), Session 5, pp. Dl—D34, July 1999.

    Google Scholar 

  4. E. Hirt, M. Scheffler and G. Troster, “The Use of Area I/O or a Look on Future Architectures,” Proceedings MCM ‘89 (Denver, CO), pp. 339–344, Apr. 1999.

    Google Scholar 

  5. L. J. Curran, Why Ball Grid Arrays are Picking Up Speed, Semiconductor Business News, CMP Media Inc., http://www.eoenabled.com/edtn/out.asp? n=33586386&i=why+ball+grid+arrays+are+ picking+up+sp/eed&url=http % 3A %2F %2 Fwww%2Esemibiznews %2Ecom%-2Fpub% 2F0997%2Finain %2Ehtm&title=Semiconductor+Business+News+Print+Edition %2C +9%2F97, Sept. 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl J. Puttlitz Paul A. Totta

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuzawinski, M.J., Homa, T.R. (2001). Plastic Ball Grid Array. In: Puttlitz, K.J., Totta, P.A. (eds) Area Array Interconnection Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1389-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1389-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5529-8

  • Online ISBN: 978-1-4615-1389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics