Skip to main content

Reliability of Die-Level Interconnections

  • Chapter
Area Array Interconnection Handbook

Abstract

At the die level, solder interconnections can fail by a number of failure mechanisms if the stress conditions are severe; i.e., fatigue, corrosion, metal migration, electromigration, creep, and thermomigration. Under normal field conditions, non-encapsulated open-array flip chip solder joints attached to alumina chip carriers exhibit the best reliability in the field among all interconnect methods. This, of course, is the result of following established design rules, process parameters and having a firm understanding of the reliability factors associated with flip chip interconnects. Many of these reliability factors are discussed in this chapter. It is necessary to establish an accelerated test capability so that a relatively long life in the field can be predicted on the basis of short term tests. The validity of the tests is achieved by verifying established semi-empirical models and characteristic parameters, and then are employed to predict the field life of joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. C. Montgomery, Introduction to Statistical Quality Control, 2nd ed., New York: Wiley, 1991.

    Google Scholar 

  2. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, 4th ed., New York: McMillan, 1998.

    Google Scholar 

  3. S. R. Calabro, Reliability Principles and Practices, New York: McGraw-Hill, 1962.

    Google Scholar 

  4. G. J. Hans and S. S. Shapiro, Statistical Models in Engineering, New York: Wiley, 1967.

    Google Scholar 

  5. P. A. Tobias and D. Trindade, Applied Reliability, New York: Van Nostrand Reinhold, 1986.

    MATH  Google Scholar 

  6. G. Di Giacomo, “Modeling the Effect of Oxygen on the Fatigue Lifetime of Solder Joints,” Proc. IEEE International Reliability Physics (Las Vegas, Nevada), pp. 93–96, Apr. 1995.

    Google Scholar 

  7. K. C. Norris and A. H. Landzberg, IBM.. Res. Devel, May, 1969.

    Google Scholar 

  8. C. W. Chen and E. S. Machlin, Trans. Amer. Inst. Min. Met. Engrs, 209, pp. 788,1957.

    Google Scholar 

  9. M. C. Shine, L. R. Fox and W. H. Sofia, “A Strain Range Partitioning Procedure for Solder Fatigue”, Proc. oflnt. Elect. Pkg. Soc. Cont, pp. 346–359,1984.

    Google Scholar 

  10. C. F. Felter, Acta Metallurgica, vol. 21, p. 351, 1972.

    Google Scholar 

  11. E J. E Forsyth, Acta Metallurgica, vol 11, p. 703,1963.

    Article  Google Scholar 

  12. T. K. Hong et al., “Threshold Stress for Cyclic Creep Accelerated Copper,” J. Mat. Sci, vol. 23, pp. 1569–1572,1988.

    Article  Google Scholar 

  13. E. Hart, “On the Role of Dislocations in Bulk Diffusion,” Acta Metallurgica, vol. 5, p. 597, 1951.

    Article  Google Scholar 

  14. G. Di Giacomo, “Effect of Mini-Cycles on the Solder Joint Fatigue Behavior as a Result of Their Superimposition on Main Cycles,” Proc. ISHM (Minneapolis, Minnesota), pp. 302–307, Oct. 1996.

    Google Scholar 

  15. G. Di Giacomo, “Thermomechanical Fatigue-Damage Limit in Solders Due to Their Anelasticity,” Proc. ISHM First Joint Materials and Interconnect/Surface Mount Technol. Conf (San Diego, CA), Mar. 1990.

    Google Scholar 

  16. G. Di Giacomo, “Thermal Cycle Frequency-Threshold Below Which Solder-Joint Fatigue Damage Saturates as Stresses Relax,” Proc. Int. Packaging Symp (IMAPS) (San Diego, CA), pp. 203–208, Dec. 1997.

    Google Scholar 

  17. M. S. Cole et al., “Constant Strain Rate Tensile Properties of Various Lead-Based Alloys at 50 and 100°C,” Materials Development in Microelectronic Packaging Conference (Montreal, Canada), pp. 241–249,1991.

    Google Scholar 

  18. G. Di Giacomo, “Thermal Diffusion Model Describing Transient Strain in Chip Solder Joints Under Thermal Cycling,” Proc. Int. Symp. Microelectronics (San Francisco, CA), pp. 637–642, Oct. 1992.

    Google Scholar 

  19. K. U. Snowden, “The Effect of Atmosphere on the Fatigue of Lead,” Acta Metallurgica, vol. 12, pp. 295–303,1964.

    Article  Google Scholar 

  20. R. Berriche, M. E. Waynman, M. E. Fine and D.A. Jeannotte, “The Effect of Environmental Fatigue of Low-Tin Lead Base Alloy,” Proc. Electronic Packaging and Corrosion in Microelectronics, pp. 169–174,1987.

    Google Scholar 

  21. H. Ewals and R. Wanhill, Fracture Mechanics, London: Edward Arnold Publisher Ltd, 1985, p. 180.

    Google Scholar 

  22. K. J. Lodge and D. J. Peddler, “The Impact of Packaging on the Reliability of Flip Chip Solder Bonded Devices,” Proc. 40th Elec. Components and Technology Conference, vol. 1 (Las Vegas, Nevada), pp. 470–476, May 1990.

    Article  Google Scholar 

  23. G. Di Giacomo, “Oxidation Kinetics of Pb-Sn Eutectic Solder and Degradation of Contact Thermal Resistance,” Proc. Int. Symp. Microelectronics, pp. 322–327,1986.

    Google Scholar 

  24. G. Di Giacomo, K. L. Granato, H. Shaukatullah and F. Casullo, “Oxidation Kinetics of Sn-Bi Eutectic and Thermal Contact Resistance,” Proc. ISHM Symp, pp. 587–593, 1987.

    Google Scholar 

  25. G. Di Giacomo and L. Li, “Fatigue Reliability of Solder Interconnects for First and Second Level Packaging,” Proc. International Electronics Manufacturing Technology Symposium (Austin, TX), 1998.

    Google Scholar 

  26. G. Di Giacomo and L. Li, “Generic Fatigue Model for C4, CBGA, CCGA and PBGA Interconnects at Package Structure Level.” 1999 International Systems Packaging Symposium (IMAPS), (San Diego, CA), pp. 156–162, Jan. 1999.

    Google Scholar 

  27. R. Satoh, K. Arakawa, M. Harada and K. Matsui, “Fatigue Enhancement by a Factor of Two for Joints Slightly Barrel Shaped,” IEEE Trans. Components, Hybrids and Manuf Techno1,14(1): pp. 264–272,1991.

    Google Scholar 

  28. G. Di Giacomo, “Reliability/Defect Severity, ”Chapter 18 A. H. Landzberg, ed., Microelectronics Manufacturing Diagnostics Handbook, New York: Van Nostrand Reinhold, 1993.

    Google Scholar 

  29. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc, p. 309,1983.

    Google Scholar 

  30. S. P. Sim and R. W. Lawson, “The Influence of Plastic Encapsulant on Passivation Layers on The Corrosion of Thin Aluminum Films Subjected to Humidity Stress,” 17th Proc. Reliability Phys. Symp, pp. 103–112,1979.

    Google Scholar 

  31. N. Lycoudes, “The Reliability of Plastic Microcircuits in Moist Environments,” Solid State Technol, pp. 53–62,1978.

    Google Scholar 

  32. R. P. Merrett, J. P. Bryant and R. Studd, “An Appraisal of High Temperature Humidity Stress tests for Accelerating Plastic Encapsulated Semiconductor Components.” IEEE Int. Reliability Phys. Symp, pp. 73–82, 1983.

    Google Scholar 

  33. D. S. Peck, “Comprehensive Model for Humidity Testing Correlation,” IEEE Int. Reliability Phys. Symp, pp. 44–50,1986.

    Google Scholar 

  34. C. G. Sherley and C. E. C. Hong, “Optimal Acceleration of Cyclic C.H.B. Tests for Plastic Packaged Devices,” IEEE Int. Reliability Phys. Symp, pp. 12–22,1991.

    Google Scholar 

  35. G. Di Giacomo, “Corrosion Model for Plastic Encapsulated and Hermetic Modules,” Proc. 18th Reliability Phys. Symposium, pp. 275–281,1980.

    Google Scholar 

  36. J. Crank, The Mathematics of Diffusion, London: Oxford University Press, 1956.

    MATH  Google Scholar 

  37. A. W. Adamson, Physical Chemistry of Surfaces, New York: Interscience, 1970.

    Google Scholar 

  38. J. T. G. Overbeck, Colloid and Surface Chemistry, Center for Advanced Engineering Studies, MIT, 1971.

    Google Scholar 

  39. G. Di Giacomo, “Electrochemical Migration,” J. McHardy and F. Ludwig, eds., Electo-chemistry of Semiconductors and Electronics, New Jersey: Noyes Publications, 1992.

    Google Scholar 

  40. G. Di Giacomo, “Current Leakage Kinetics Across Tinned Cr/Cu Lands Having Epoxy Overlay,” IEEE Trans. Components, Hybrids, and Manuf. Technol, CHMT8 (4): pp. 440–445, 1985.

    Google Scholar 

  41. S. K. Sen, S. Sen and C. L. Baugerg, “Determination of the Oxidation States of Tin by Auger Electron Microscopy,” Thin Solid Films, vol. 82, pp. 157–164,1981.

    Article  Google Scholar 

  42. Y. Okamoto, J. W. Carter and D. M. Hercules, “A Study of the Interaction of Pb-Sn Solder with O2, H2O NO 2byESCAandAES, ”Appl Spectroscopy,33(3):1970.

    Google Scholar 

  43. R. J. Bird, “Corrosion-Resistant Lead-Indium Alloys: Surface Studies by Photoelectron Spectroscopy (ESCA),” J. Metal Science, 7: pp. 109–113,1973.

    Article  MathSciNet  Google Scholar 

  44. C. L. Lau and G. K. Wertheim, “Oxidation of Tin: an ESCA Study,” J. Vac. Sci. Technol, 15(2): 1978.

    Google Scholar 

  45. I. A. Blech and C. Herring, “Stress Generation by Electromigration,” Appl. Phys. Lett, 29(3): 1976.

    Google Scholar 

  46. I. A. Blech, J. Appl. Phys, 47: p. 1303,1976.

    Article  Google Scholar 

  47. G. Di Giacomo, “Electromigration Depletions in Pb-Sn Films,” Proc. Reliability Phys. Symp, pp. 72–76,1979.

    Google Scholar 

  48. H. B. Huntington and P. S. Ho, “Electromigration of Metals,” Proc. Int. Conf. Crystal Lattice Defects,Journal of the Physical Society of Japan, vol. 18, Supp. II, pp. 202–208, 1973.

    Google Scholar 

  49. G. J. Van Gurp, P. J. de Waard and F. J. Duchatenier, “Thermomigration in Indium Alloy Films,” J. Appt Phys, 58(2): 1995.

    Google Scholar 

  50. Y. Adda and J. Phillibert, La Diffusion Dans Le Solider, Paris: Presses Univ. de France, 1966.

    Google Scholar 

  51. H. Weyer, Electro-und Thermotransport in Metallen, Barth Leipzig, 1973.

    Google Scholar 

  52. H. I. Yoo and B. J. Wuensch, J. Phys. Chem. Solids, 54(5): pp. 613–620,1993.

    Article  Google Scholar 

  53. J. H. Matlock and J. P. Stark, Acta Metallurgica, vol. 19, p. 923,1971.

    Article  Google Scholar 

  54. G. Di Giacomo, Reliability of Electronic Packages and Semiconductor Devices, New York: McGraw-Hill, pp. 271–279,1996.

    Google Scholar 

  55. C. Soret, Arch. Sci. Phys. Nat, p. 348,1879.

    Google Scholar 

  56. C. C. Huang, A. J. Levadwoski, M. J. Nelson and S. R. Orr, “Component/System Correlation of Alpha-Induced Dynamic RAM Soft Failure Rate,” Proc. IEEE International Reliability Physics Symposium, pp. 23–29, 1979.

    Google Scholar 

  57. D. P. Bouldin, “The Measurement of Alpha-Particle Emission from Semiconductor Memory Materials,” American Institute of Mining, Metallurgical + Petroleum Engineers, pp. 747–795,1981.

    Google Scholar 

  58. E. S. Meieran, P. R. Engel and T. C. May, “Measurement of Alpha Particle Radioactivity in IC Device Packages,” Proc. 17th Reliability Phys. Symposium, pp. 13–22, 1979.

    Google Scholar 

  59. T. S. May, “Alpha-Particle Measuring Technique,” Microelectronic Measurement Technology Seminar (San Jose, CA), 1979. 63.

    Google Scholar 

  60. C. M. Hsieh, P. C. Murley and R. R. O’ Brien, “Dynamics of Charge Collection from Alpha 64. Particles Tracks in Integrated Circuits,” Proc. 19 th Reliability Phys. Symposium (Orlando, FL), pp. 38–42,1981.

    Google Scholar 

  61. M. L. White, J. W. Serpiello, K. M. Striny and W. Rosenzweig, “The Use of Silicone RTV Rubber for Alpha Particle Protection for Silicon Integrated Circuits,” IEEE Proc. International Reliability Physics Symposium, 65. pp. 43–47,1981.

    Google Scholar 

  62. S. Gladstone, Source Book in Atomic Energy, New York: Van Nostrand Reinhold, 1967, 3rd Ed., pp. 247–592, 771–853.

    Google Scholar 

  63. H. B. Huntington and A. R. Grone, J. Phys. Chem. Solids, vol. 20, p. 76,1961.

    Article  Google Scholar 

  64. K. J. Puttlitz and H. Quinones, “Flip Chip Interconnections: A Reliability Perspective,” Design and Reliability of Solders and Solder Interconnections, Proc. Of a Symposium Held During The Minerals, Metals and Materials Society Annual Meeting (Orlando, Florida), pp. 359–366, Feb. 1997.

    Google Scholar 

  65. S. E. Greer, “Low-Expansivity Organic Substrate for Flip-Chip Bonding,” Proc. 28th Elec. Comp. Conf, 5: pp. 166–171,1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl J. Puttlitz Paul A. Totta

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

DiGiacomo, G., Jaspal, J.S. (2001). Reliability of Die-Level Interconnections. In: Puttlitz, K.J., Totta, P.A. (eds) Area Array Interconnection Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1389-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1389-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5529-8

  • Online ISBN: 978-1-4615-1389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics