Advertisement

History of Flip Chip and Area Array Technology

  • Paul A. Totta

Abstract

The concept of interconnecting a chip to a package in a face-down or “flip chip” orientation is simple enough, and forty years old. The idea of having input-output connections all over the face of a flip chip is also a simple idea, and twenty-five years old. Then, how is it, in the last days of the twentieth century, that the electronics industry finds itself in the midst of a revolution in electronic assembly referred to as flip-chip area-array packaging?

Keywords

Fatigue Life Solder Joint Solder Ball Solder Bump Very Large Scale Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Kohl, Handbook of Materials and Techniques for Vacuum Devices, eds., New York, Amsterdam, London: Reinhold, 1967.Google Scholar
  2. 2.
    J. Bardeen and W. H. Brattain, Phys. Rev., 74:p. 230, July 1948.CrossRefGoogle Scholar
  3. 3.
    W. H. Brattain and J. Bardeen, Phys. Rev., 74:p. 231, July 1948.CrossRefGoogle Scholar
  4. 4.
    W. Shockley and G. L. Pearson, Phys. Rev., 74: p. 232, July 1948.CrossRefGoogle Scholar
  5. 5.
    L. P. Hunter, Handbook of Semiconductor Electronics. New York: McGraw-Hill, 1970, pp. 9–19.Google Scholar
  6. 6.
    O. L. Anderson, H. Christensen and P. Andreatch, “Technique for Connecting Leads to Semiconductors,” Journal of Applied Physics, 28: p. 923, Aug. 1957.CrossRefGoogle Scholar
  7. 7.
    J. M. Goldey, “7C-Evaporation and Alloying to Silicon,” in F. J. Biondi, Transistor Technology, vol. 3, Princeton: Van Nostrand, 1958, p. 231.Google Scholar
  8. 8.
    B. Selikson and T. A. Longo, “A Study of Purple Plague and its Role in Integrated Circuits,” Proceedings of IEEE, 52: p. 1638, Dec. 1964.CrossRefGoogle Scholar
  9. 9.
    E. Philofsky, “Intermetallic Formation in Gold-Aluminum Systems,” Solid State Electronics, 13: pp. 1391–1399, Oct. 1970.CrossRefGoogle Scholar
  10. 10.
    G. C. Harman, Reliability and Yield Problems of Wire Bonding in Microelectronics, Reston, VA: ISHM, 1989, pp. 141–163, pp. 164–177.Google Scholar
  11. 11.
    E. Pugh, Building IBM Cambridge: The MIT Press, 1995, pp. 163–182, pp. 263–316.Google Scholar
  12. 12.
    E. W. Pugh, L. R. Johnson and J. H. Palmer, IBM’s 360 and Early 370 System, Cambridge: The MIT Press, 1991, pp. 48–112, pp. 424476.Google Scholar
  13. 13.
    E. M. Davis, W. E. Harding, R. S. Schwartz and J. J. Corning, “Solid Logic Technology: Versatile, High Performance Microelectronics,” IBM J. Res Develop., 8: p. 102,1964.CrossRefGoogle Scholar
  14. 14.
    J. A. Perri, H. S. Lehman, W. A. Pliskin and J. Riseman, “Surface Protection of Silicon Devices with Glass Films,” Electrochemical Society Fall Meeting, (Detroit, MI), Oct. 2, 1961.Google Scholar
  15. 15.
    W. A. Pliskin and E. E. Conrad, “Techniques for Obtaining Uniform Thin Glass Films on Substrates,” Electrochemical Technology, 2: p. 196,1964.Google Scholar
  16. 16.
    E. Bloch Presentation at IBM, “Solid Logic Technology Program-Objectives and Directions,” Aug. 1,1961. As described by E. Pugh et al. in Ref. [12], p. 75.Google Scholar
  17. 17.
    D. K. Seto and H. Wing, “High Speed Saw for Dicing Silicon Wafers,” presented at ASME Meeting (New York), NY, 1966.Google Scholar
  18. 18.
    T. R. Reid (describing the activities of J. Kilby and R. Noyce, the co-inventors of integrated circuits), The Chip, New York: Simon and Schuster, 1984.Google Scholar
  19. 19.
    “RCA’s New Spectra 70 Series,” Datamation, pp. 34–36, Dec. 1964.Google Scholar
  20. 20.
    M. Hansen, The Constitution of Binary Phases Diagrams, 2nd Edition, New York: McGraw Hill, 1958, pp. 230–231.Google Scholar
  21. 21.
    E. Davis, R. McNutt and A. Mones, “Method of Fabricating Microminiature Functional Components,” US Patent 3,292,240, issued Dec. 20, 1966.Google Scholar
  22. 22.
    P. Totta, “Flip-Chip Solder Terminals,” 21st Electronic Components Conf., p. 275, May 1971.Google Scholar
  23. 23.
    I. Hymes, R. Sopher and P. Totta, “Terminals for Microminiaturized Devices and Methods of Connecting Same to Circuit Panels,” US Patent 3,303,393 issued Feb. 7,1967.Google Scholar
  24. 24.
    P. A. Totta and R. P. Sopher, “SLT Device Metallurgy and its Monolithic Extensions,” IBM J of Res and Develop., 13: p. 226, May 1969.CrossRefGoogle Scholar
  25. 25.
    L. E Miller, “Controlled Collapse Reflow Chip Joining,” IBM J of Res and Develop.,13: p. 239, May 1969. US Patent 3,429,040 issued Feb. 25, 1969.Google Scholar
  26. 26.
    J. Langdon, C. Karan, R. Pecoraro and P. Totta, “Vapor Depositing Solder” (BLM/ Solder Unimask Process), Patent 3,401,055, issued Sept. 10, 1968.Google Scholar
  27. 27.
    L. F Miller, “Silver Palladium Fired Electrodes”: Proc. IEEE Electronics Components Conference, pp. 52–64, May 1968.Google Scholar
  28. 28.
    V. Marcotte and N. G. Koopman, “Palladium Depletion of AgPd Thick Film Electrodes,” Proc. of IEEE Elec. Comp. Conf, pp. 157–164, May 1981.Google Scholar
  29. 29.
    G. DiGiacomo, J. Gniewek, J. Rizzuto and W. Rosenberg, “AuAgPd Ternary Alloy for Thick Film Electrodes,” Proc. of IEEE Elec. Comp. Conf., pp. 354–356, May 1982.Google Scholar
  30. 30.
    P. D. Davidse and L. I. Maissel, “RF Sputtering of Insulators,” 3rd Intl. Vacuum Congress (Stuttgart, Germany), July, 1965; “Dielectric Thin Films through RF Sputtering,” Journ. of Appl. Phys., 37: p. 574, 1966.CrossRefGoogle Scholar
  31. 31.
    L. Kuiper, Si-Doped Al Patent, “Method for Providing Electrical Connections to Semiconductor Devices,” Patent 3,382,568 issued May 14,1968.Google Scholar
  32. 32.
    I. Ames, F. M. D’Heurle and R. Horstman, “Reduction of Electromigration in Aluminum Films by Copper Doping,” IBM J Res. Dev., 14: p. 461,1970.CrossRefGoogle Scholar
  33. 33.
    B. Agusta, P. Bardell and P. Castrucci, “Sixteen Bit Monolithic Memory Array Chip,” IEEE Electron Devices Meeting (Washington, DC), Oct. 1965.Google Scholar
  34. 34.
    L. Goldman, “Self-Alignment Capability of Controlled Collapse Chip Joining,” Proc. 22nd Elec. Comp. Conf., p. 332, May 1972.Google Scholar
  35. 35.
    S. Patra and Y. Lee, “Modeling of Self Alignment in Flip Chip Soldering-Part 2; Multichip Solder Joints,” Proc ECTC,pp. 783–788, May 1991.Google Scholar
  36. 36.
    K. C. Norris and A. H. Landzberg, “Reliability of Controlled Collapse Interconnections,” IBM J. Res Develop., 13: p. 266, May 1969.CrossRefGoogle Scholar
  37. 37.
    L. E Coffin, Jr., “Low-Cycle Fatigue,” Metals Engineering Quarterly, p. 15, Nov. 1963.Google Scholar
  38. 38.
    L. S. Goldman, “Geometric Optimization of Controlled Collapse Interconnections,” IBM J. Res. Develop., 13: p. 251, May 1969.CrossRefGoogle Scholar
  39. 39.
    B. Landman and R. Russo, “On a Pin versus Block Relationship for Partitions of Logic Graphs,” IEEE Trans. Comput., C-20: p. 1469, 1971.Google Scholar
  40. 40.
    D. J. Bendz, R. W. Gedney and J. Rasile, “Cost/Performance Single Chip Module,” IBM J. Res. Develop., 26: pp. 278–285,1982.CrossRefGoogle Scholar
  41. 41.
    M. E. Williams, “Production of MCP Chip Carriers,” 40th ECTC,pp. 408–411, May 1990.Google Scholar
  42. 42.
    A. J. Blodgett, “A Multilayer Ceramic Multichip Module,” IEEE Components Hybrid Manuf. Technol., CHMT-3: p. 634,1980.Google Scholar
  43. 43.
    A. Oscilowski, SEMATECH, Packaging Subsection, NEMI Roadmap, 1996.Google Scholar
  44. 44.
    M. P. Lepselter, “Beam Lead Technology,” Bell System Tech J, 45: pp. 233–253, Feb. 1966.Google Scholar
  45. 45.
    J. M. Smith, invited presentation on “GE Mini-mod TAB Technology,” 21st ECC, May 1971.Google Scholar
  46. 46.
    G. Dehaine and M. Leclercq, “Tape Automated Bonding, A New Multichip Module Assembly Technique,” Electronic Components Conference Proceedings, pp. 69–73, May 1973.Google Scholar
  47. 47.
    M. J. Sheaffer, “Wirebonding,” Microelectronics Packaging Handbook, Second Edition, R. Tummala, et al., New York: Chapman & Hall, 1997, pp. 11–186 to 11–217.Google Scholar
  48. 48.
    M. G. Pecht and L. T. Nguyen, “Plastic Packaging,” Microelectronic Packaging Handbook,Second Edition, Tummala, ed., New York: Chapman & Hall, 1997, pp. 11–394 to 11–508.Google Scholar
  49. 49.
    J. Lau, Ball Grid Array Technology, New York: McGraw Hill, 1995, p. 144.Google Scholar
  50. 50.
    T. Caulfield, J. Benenati and J. Acocella, “Surface Mount Array Interconnections for High I/O MCM-C to Card Assemblies,” Proc. of Int’l Con. on Multichip Modules (Denver, CO), pp. 320–325, April 1993.Google Scholar
  51. 51.
    K. Puttlitz, T. Caulfield and M. Cole, “Effect of Material Properties on the Fatigue Life of Dual Solder (DS) Ceramic Ball Grid Array (CBGA) Solder Joints,” Proc. 45th ECTC, pp. 1005–1010, May 1995.Google Scholar
  52. 52.
    E M. Hall, “Solder Post Attachment of Ceramic Chip Carriers to Ceramic Film Integrated Circuits,” 31st Electronic Components Conference Proceedings, pp. 172–180, May 1981.Google Scholar
  53. 53.
    B. T. Clark, “Design of the IBM Thermal-Conduction Module,” Proc. IEEE Hybrids Manuf. Technol., CHMT-4: 1981.Google Scholar
  54. 54.
    R. C. Chu, U. P. Hwang and R. E. Simons, “Conduction-Cooled Module for High-Performance LSI Devices,” IBM J. Res. Devel., 26(1): pp. 55–56,1982.CrossRefGoogle Scholar
  55. 55.
    T. Redmond, C. Prasad and G. Walker, “Polymide Copper Thin Film Redistribution on Glass Ceramic/Copper Multilevel Substrates,” 41st ECTC Proceedings, pp. 689–692, May 1991.Google Scholar
  56. 56.
    K. J. Puttlitz, “Flip-Chip Replacement Within the Constraints Imposed by Multilayer Ceramic (MLC) Modules,” J. Electron. Mater., 13 (1): pp. 29–46,1984.CrossRefGoogle Scholar
  57. R. R. Tummala, J. U. Knickerbocker, S. H. Knickerbocker, L. W. Herron, R. N. Master, R. W. Nufer, M. O. Niesser, B. M. Kellner,C. H. Perry, J. N. Humenik and T. E Redmond, “High Performance Glass Ceramic/Copper Multilayer Substrate with Thin Film Redistribution,” IBM J. Res. Devel., 36: pp. 889–903, 1992.CrossRefGoogle Scholar
  58. 58.
    D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce and J. Slattery, “Full Copper Wiring in a Sub-0.25 gm CMOS ULSI Technology,” Tech. Dig. IEEE Electron Devices Mtg.,pp. 773–776, 1997.Google Scholar
  59. 59.
    G. Katopis, W. Becker, T. Mazzawy, H. Smith, C. Vakirtzis, S. Kuppinger, B. Singh, P. Lin, J. Bartells, Jr., G. Kihlmire, P. Venkatachalam, H. Stoller and J. Frankel, “MCM Technology and Design for the S/390 G5 System,” IBM J. Res. Develop., 43, No. 5/6: pp. 621–650, Sept./Nov. 1999.Google Scholar
  60. 60.
    F. Nakano, T. Soga and S. Amagi, “Resin Insertion Effect on Thermal Cycle Resistivity of Flip Chip Mounted LSI Devices,” Proceeding of 1987 ISHM Conference, pp. 536–541, Sept. 1987.Google Scholar
  61. 61.
    D. Suryanarayana, R. Hsiao, T. P. Gall and J. M. McCreary, “Flip Chip Solder Bump Fatigue Life Enhanced by Polymer Encapsulation,” Proc. 40th Elec. Comp. Tech. Conf., pp. 338–344, May 1990.Google Scholar
  62. 62.
    Y. Tsukada, “Surface Lamilar Circuit and Flip Chip Attach Packaging,” ECTC Proceedings, pp. 22–27, May 1992.Google Scholar
  63. 63.
    H. L. Heck, J. T. Kolias and J. S. Kresge, “High Performance Carrier Technology,” Proc. 1993 IEPS Conf.,pp. 771–779, June 1993.Google Scholar
  64. 64.
    J. Korleski, R. Gorrell, C. Bowen and D. Noddin, “New Composite Organic Dielectric for High Performance Flip Chip Single Chip Packages,” 47th ECTC Proceedings, pp. 1015–1021, May 1997.Google Scholar
  65. 65.
    C. Tytran-Palomaki, R. Stutzman, D. Alcoe, T. Kindl, J. Kresge and J. Libous, “A High Performance, Low Stress, Laminated Ball Grid Array Flip Chip Carrier,” presentation at Semicon West, Session 6 (San Jose, CA), July 14,1999.Google Scholar
  66. 66.
    B. Freyman and R. Pennisi, “Overmolded Plastic Pad Array Carriers (OMPAC): A Low Cost, High Interconnect Density IC Packaging Solution for Consumer and Industrial Electronics,” Proc. 41st ECTC, p. 176, May 1991.Google Scholar
  67. 67.
    S. Lindsey, J. Aday, B. Blood, Y. Guo, B. Hemann, J. Kellar, C. Koehler, J. Liu, V. Sarinan, T. Tessier, L. Thompson and B. Yeung, “JACS-Pak’ Flip-Chip Chip Scale Package Development and Characterization,” Proc. 48th ECTC, p. 511, May 1998.Google Scholar
  68. 68.
    T. DiStefano, “The uBGA as a Chip Size Package,” Proc. Nepcon West `95, pp. 327–333, Feb./Mar. 1995.Google Scholar
  69. 69.
    T. Houston, “Inside the Newest SONY Camcorder,” Portable Design, p. 28, May 1997.Google Scholar
  70. 70.
    N. Koopman, Concise Encyclopedia of Semiconducting Materials and Related Technologies, London: Pergamon Press, 1992, pp. 184–187.Google Scholar
  71. 71.
    M. Ohshima, A. Kenmotsu and I. Ishi, “Optimization of Micro Solder Reflow Bonding for the LSI Flip Chip,” The Second International Electronics Packaging Conference, Nov. 1982.Google Scholar
  72. 72.
    L. J. Fried, J. Havas, J. S. Lechaton, J. S. Logan, G. Paal and P. Totta, “A VLSI Bipolar Metallization Design with Three-Level Wiring and Area Array Solder Connections,” IBM J. Res. Develop., 26: pp. 362–371, May 1982.CrossRefGoogle Scholar
  73. 73.
    W. C. Ward, “Volume Production of Unique Plastic Surface-Mount Modules for the IBM 80 ms 1-M bit DRAM Chip by Area Wire Bond Techniques,” 39th Electronics Components Conference, pp. 552–557, May 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Paul A. Totta
    • 1
  1. 1.IBM MicroelectronicsUSA

Personalised recommendations