Skip to main content

Possible Mechanisms That May Determine the Set Point and Sensitivities of the Chemoreflexes

  • Chapter
Frontiers in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 499))

Abstract

A century ago, Haldane and Priestley demonstrated the exquisite sensitivity of ventilation (VE) to small variations in alveolar PCO2 6. This belief in the primacy of CO2 over O2 in the regulation of V E has persisted through into modern physiology, for example, in his textbook on Respiratory Physiology15, West writes, “The most important factor in the control of ventilation under normal conditions is the PCO2 of the arterial blood.” Indeed, a reasonable estimate is that ventilation is 30 fold more sensitive to acute variations in Pco2 compared with Po2 for blood gas tensions around sea level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astrom, K. J. & Wittenmark, B.,1995. Adaptive Control. Reading: Addison-Wesley.

    Google Scholar 

  2. Bellville, J. W., Whipp, B. J., Kaufman, R. D., Swanson, G. D., Aqleh, K. A. & Wiberg, D. M., 1979. Central and peripheral chemoreflex loop gain in normal and carotid body-resected subjects. Journal of Applied Physiology 46, 843–853.

    PubMed  CAS  Google Scholar 

  3. Chemiack, N. S., 1999. Control of breathing in chronic obstructive pulmonary disease. In M. D. Altose & Y. Kawakami (Eds.), Control of Breathing in Health and Disease (pp. 423–437). New York: Marcel Dekker.

    Google Scholar 

  4. Fatemian, M., Dahan, A., Meinesz, S., Mey, A. v. d. & Robbins, P. A., 2000a. Modelling the ventilatory response to variations in end-tidal PCO2 in patients who have undergone bilateral carotid body resection. in: Frontiers in Modeling and Control of Breathing: Integration at Molecular, Cellular and Systems Levels, edited by C.-S. Poon and H. Kazemi (Kluwer Academic/Plenum Press, New York, 2001), this volume.

    Google Scholar 

  5. Fatemian, M., Kim, D. Y., Poulin, M. J. & Robbins, P. A., 2000b. Long-haul flights may induce respiratory changes similar to ventilatory acclimatisation to altitude. in: Frontiers in Modeling and Control of Breathing: Integration at Molecular, Cellular and Systems Levels, edited by C.-S. Poon and H. Kazemi (Kluwer Academic/Plenum Press, New York, 2001), this volume.

    Google Scholar 

  6. Haldane, J. S. & Priestley, J. G., 1905. The regulation of the lung-ventilation. Journal of Physiology 32, 225–266.

    PubMed  CAS  Google Scholar 

  7. Howard, L. S. G. E. & Robbins, P. A., 1995. Ventilatory response to 8 h of isocapnic and poikilocapnic hypoxia in humans. Journal of Applied Physiology 78, 1092–1097.

    PubMed  CAS  Google Scholar 

  8. Michel, C. C. & Milledge, J. S., 1963. Respiratory regulation in man during acclimatisation to high altitude. Journal of Physiology 168, 631–643.

    PubMed  CAS  Google Scholar 

  9. Pan, L. G., Forster, H. V., Martino, P., Strecker, P. J., Beales, J., Serra, A., Lowry, T. F., Forster, M. M. & Forster, A. L., 1998. Important role of carotid afferents in control of breathing. Journal of Applied Physiology 85, 1299–1306.

    PubMed  CAS  Google Scholar 

  10. Poon, C.-S. & Siniaia, M. S., 2000. Plasticity of cardiorespiratory neural processing: classification and computational functions. Respiration Physiology 122, 83–109.

    Article  PubMed  CAS  Google Scholar 

  11. Rahn, H. & Otis, A. B., 1949. Man’s respiratory response during and after acclimatization to high altitude. American Journal of Physiology 157, 445–462.

    PubMed  CAS  Google Scholar 

  12. Rahn, H., Stroud, R. C., Tenney, S. M. & Mithoefer, J. C., 1953. Adaptation to high altitude: respiratory response to CO2 and O2. Journal of Applied Physiology 6, 158–162.

    PubMed  CAS  Google Scholar 

  13. Ren, X., Fatemian, M. & Robbins, P. A., 2000. Changes in respiratory control in humans induced by 8 h of hyperoxia. Journal of Applied Physiology 89, 655–662.

    PubMed  CAS  Google Scholar 

  14. Tansley, J. G., Fatemian, M., Howard, L. S. G. E., Poulin, M. J. & Robbins, P. A., 1998. Changes in respiratory control during and after 48 h of isocapnic and poikilocapnic hypoxia in humans. Journal of Applied Physiology 85, 2125–2134.

    PubMed  CAS  Google Scholar 

  15. West, J. B., 2000. Respiratory Physiology. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robbins, P.A. (2001). Possible Mechanisms That May Determine the Set Point and Sensitivities of the Chemoreflexes. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics