Skip to main content

Role of Nitric Oxide in Short-Term Potentiation and Long-Term Facilitation

Involvement of NO in breathing stability

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 499))

Abstract

It has been well documented that increases in breathing in response to a variety of stimuli may often outlast the actual period of stimulation in various species (see references1, 2). For instance, after a brief hypoxic challenge, ventilation slowly returns to baseline values over a period of minutes, a phenomenon often termed as “short-term potentiation (STP).” On the other hand, after episodes of recurrent hypoxic challenges, depending on species, breathing may remain elevated as long as an hotir. This long lasting enhancement of respiration that follows recurrent episodes of hypoxia is referred to as “long-term facilitation (LTF).” It has been proposed that STP and LTF are critical for maintaining stability of breathing, especially in situations involving acute changes in arterial blood gases2, and may involve brainstem neurons1,2. Recent studies on hippocampal neurons suggest that nitric oxide (NO) is critical for the development of long term potentiation (LTP) associated with learning and memory3,4. Given that NOS-1, the enzyme that generates NO, is co-localized with 5-HT in raphe neurons5, 6, which has been shown to be important for the generation of LTF2, as well as our recent observation that NOS-1 mutant mice exhibit breathing instability during hypoxia7, prompted us to examine whether NO generated by NOS-1 plays a role in the development STP and/or LTF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.L. Powell, W.K. Milsom, and G.S. Mitchell, Time domains of the hypoxic ventilatory response., Respir. Physiol. 112:123 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. F.L. Eldridge and D.E. Millhorn, Oscillation, gating, and memory in the respiratory control system, in: “The Respiratory System; Control of Breathing”, N.S. Cherniack and J.G. Widdicombe, eds., American Physiological Society, Bethesda (1986).

    Google Scholar 

  3. J.C. McEachern and C.A. Shaw, The plasticity-pathology continuum: defining a role for the LTP phenomenon, J. Neurosci. Res. 58:42 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. G.Y. Ko and P.T. Kelly, Nitric oxide acts as a postsynaptic signaling molecule in calcium/calmodulin-induced synaptic potentiation in hippocampal CAI pyramidal neurons, J. Neurosci. 19:6784 (1999).

    PubMed  CAS  Google Scholar 

  5. L. Leger, Y. Charnay, S. Burlet, N. Gay, N. Schaad, C. Bouras, and R. Cespuglio, Comparative distribution of nitric oxide synthase-and serotonin-containing neurons in the raphe nuclei of four mammalian species, Histochem. Cell Biol. 110:517 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. L. Leger, N. Gay, S. Burlet, Y. Charnay, and R. Cespuglio, Localization of nitric oxide-synthesizing neurons sending projections to the dorsal raphe nucleus of the rat, Neurosci. Lett. 257:147 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. D.D. Kline, T. Yang, P.L. Huang, and N.R. Prabhakar, Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase., J. Physiol.(Lond.) 511:273 (1998).

    Article  CAS  Google Scholar 

  8. P.G. Wagner and F.L. Eldridge, Development of short-term potentiation of respiration., Respir. Physiol. 83:129 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. M.A. Haxhiu, C.H. Chang, I.A. Dreshaj, B. Erokwu, N.R. Prabhakar, and N.S. Cherniack, Nitric oxide and ventilatory response to hypoxia, Respir. Physiol. 101:257 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. S.R. Vincent and H. Kimura, Histochemical mapping of nitric oxide synthase in the rat brain, Neuroscience 46:755 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. S.W. Mifflin, Short-term potentiation of carotid sinus nerve inputs to neurons in the nucleus of the solitary tract., Respir. Physiol. 110:229 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. D.R. McCrimmon, E.J. Zuperku, F. Hayashi, Z. Dogas, C.F. Hinrichsen, E.A. Stuth, M. Tonkovic-Capin, M. Krolo, and F.A. Hopp, Modulation of the synaptic drive to respiratory premotor and motor neurons., Respir. Physiol. 110:161 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. C.S. Poon, M.S. Siniaia, D.L. Young, and F.L. Eldridge, Short-term potentiation of carotid chemoreflex: an NMDAR-dependent neural integrator, Neuroreport 10:2261 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. K.S. Christopherson and D.S. Bredt, Nitric oxide in excitable tissues: physiological roles and disease., J. Clin. Invest. 100:2424 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. S.H. Snyder, S.R. Jaffrey, and R. Zakhary, Nitric oxide and carbon monoxide: parallel roles as neural messengers, Brain Res. Brain Res. Rev. 26:167 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. M.M. Hamalainen and T.A. Lovick, Role of nitric oxide and serotonin in modulation of the cardiovascular defense response evoked by stimulation in the periaqueductal grey matter in rats, Neurosci. Lett. 229:105 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. M.M. Hamalainen and T.A. Lovick, Involvement of nitric oxide and serotonin in modulation of antinociception and pressor responses evoked by stimulation in the dorsolateral region of the periaqueductal gray matter in the rat, Neuroscience 80:821 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. T.A. Lovick, Role of nitric oxide in medullary raphe-evoked inhibition of neuronal activity in the periaqueductal gray matter, Neuroscience 75:1203 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kline, D.D., Prabhakar, N.R. (2001). Role of Nitric Oxide in Short-Term Potentiation and Long-Term Facilitation. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics