Skip to main content

Effect of Dna Hypomethylation on Neural Control of Respiration: A Genetic Model

  • Chapter
Frontiers in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 499))

Abstract

DNA methylation represents one form of epigenetic factors that can influence gene activities without a change in DNA sequence1. In mammals, methylation of DNA occurs at the C5 position of the cytosine residues, primarily at the CpG dinucleotides. A family of DNA methyltransferases carries out the covalent reaction of cytosine methylation. The first methylase gene, Dnmtl, encodes a maintenance DNA methyltransferase (Dnmtl, EC 2.1.1.37) which preferentially methylates hemi-methylated DNA produced after DNA replication2. Two newly discovered methylase genes, Dnmt3a and 3b, are the de novo methyltransferases that can methylate native DNA substrates3,4. The essential role for these enzymes in establishing and maintaining DNA methylation has been demonstrated by targeted mutation of DNA methyltransferases in mice. Mutant mice lacking either Dnmtl or Dnmt3a and 3b exhibit significant demethylation in the genome, and die at embryonic day (E) 8-10 just after gastrulation4-6. These results indicate that DNA methylation is essential for mammalian embryonic development. At the cellular level, DNA hypomethylation also perturbs the events of genomic imprinting, X-chromosome inactivation, and suppression of endogenous retroviruses7-10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Jaenisch. DNA methylation and imprinting: why bother? Trends Genet. 13, 323–329 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. T. Bestor, A. Laudano, R. Mattaliano, and V. Ingram. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203, 971–983 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. M. Okano, S. Xie, and E. Li. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics 19, 219–220 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. M. Okano, D. W. Bell, D. A. Haber, and E. Li. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. E. Li, T. Bestor, R. Jaenisch. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. H. Lei, S. Oh, M. Okano, R. Juttermann, K. Goss, R. Jaenisch, and E. Li,. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).

    PubMed  CAS  Google Scholar 

  7. E. Li, C. Beard, and R. Jaenisch. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. C. Beard, E. Li, and R. Jaenisch. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dey 9, 2325–2334 (1995).

    Article  CAS  Google Scholar 

  9. B. Panning, and R. Jaenisch. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dey 10, 1991–2002 (1996).

    Article  CAS  Google Scholar 

  10. C. P. Walsh, J. R. Chaillet, and T. H. Bestor. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20, 116–117 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. K. Goto, M. Numata, J. I. Komura, T. Ono, T. H. Bestor, and H. Kondo. Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 56, 39–44 (1994).

    PubMed  CAS  Google Scholar 

  12. P.J. Brooks, C. Marietta, and D. Goldman. DNA mismatch repair and DNA methylation in adult brain neurons. J Neurosci 16, 939–945 (1996).

    PubMed  CAS  Google Scholar 

  13. J. M. Trasler, D. G. Trasler, T. H. Bestor, E. Li, and F. Ghibu. DNA methyltransferase in normal and Dnmtn/Dnmtn mouse embryos. Dey Dyn 206, 239–247 (1996).

    Article  CAS  Google Scholar 

  14. K. Inano, I. Suetake, T. Ueda, Y. Miyake, M. Nakamura, M. Okada, and S. Tajima. Maintenance-type DNA methyltransferase is highly expressed in post-mitotic neurons and localized in the cytoplasmic compartment. J Biochem. 128, 315–321 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. V. L. Wilson, R. A. Smith, S. Ma, and R. G. Cutler. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262, 9948–9951 (1987)

    PubMed  CAS  Google Scholar 

  16. R. Tawa, T. Ono, A. Kurishita, S. Okada, and S. Hirose. Changes of DNA methylation level during pre-and postnatal periods in mice. Differentiation 45, 44–48 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. T. Ono T, Y. Uehara, A. Kurishita, R. Tawa, and H. Sakurai. Biological significance of DNA methylation in the ageing process. Age Ageing 22, S34–43 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. R.E. Amir, I.B. Van Den Veyver, M. Wan M, C. Q. Tran, U. Francke, and H. Y. Zoghbi. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat Genet 23, 185–188 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. H. H. Ng, and A. Bird. DNA methylation and chromatin modification. Curr Opin Genet Dey 9, 158–163 (1999).

    Article  CAS  Google Scholar 

  20. A.M. Kerr. A review of the respiratory disorder in the Rett syndrome. Brain Dev 14, 43–45 (Suppl) (1992).

    Google Scholar 

  21. D. D. Armstrong, J. K. Dunn, R. J. Schultz, D. A. Herbert, D. G. Glaze, and K. J. Motil. Organ growth in Rett syndrome, a postmortem examination analysis. Pediatr Neurol 20, 125–129 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. L. Jackson-Grusby, C. Beard, R. Possemato, D. Fambrough, G. Csankovszki, J. Dausman, P. Lee, C. B. Wilson, E. Lander, and R. Jaenisch. Loss of Genomic Methylation cause p53-dependent apoptosis and epigenetic deregulation. Nature Genet. 27, 31–9 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. B. Bates, M. Rios, A. Trumpp, C. Chen, G. Fan, J. M. Bishop, and R. Jaenisch. Neurotrophin-3 is required for proper cerebellar development. Nat Neurosci 2, 115–117 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. A. Trumpp, M.J. Depew, J.L.R. Rubenstein, J. M. Bishop, and G. R. Martin. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first banchial arch. Genes Dey 13, 3136–48 (1999).

    CAS  Google Scholar 

  25. J. F. Paton, J. M. Ramirez, and D. W. Richter. Functionally intact in vitro preparation generating respiratory activity in neonatal and mature mammals. Pflugers Arch 428, 250–260 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. D. J. Withington-Wray, S. W. Mifflin, K. M. Spyer. Intracellular analysis of respiratory-modulated hypoglossal motoneurons in the cat. Neuroscience 25, 1041–1051 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. T. Ono, Y. Ishiwata, N. Inaba, T. Kuroda, and YNakamura. Hypoglossal premotor neurons with rhythmical inspiratory-related activity in the cat, localization and projection to the phrenic nucleus. Exp Brain Res 98, 1–12 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. W. St. John. Neurogenesis of patterns of automatic ventilatory activity. Progress in Neurobiol. 56, 97–117 (1998).

    Article  Google Scholar 

  29. M. Gerard, L. Hernandez, R. Wevrick, and C. L. Stewart. Disruption of the mouse necdin gene results in early post-natal lethality. Nat Genet. 23, 199–202 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fan, G., Siniaia, M., Poon, CS., Jaenisch, R. (2001). Effect of Dna Hypomethylation on Neural Control of Respiration: A Genetic Model. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics