Central Respiratory Chemosensitivity: Cellular and Network Mechanisms

  • David Ballantyne
  • Peter Scheid
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 499)


In this chapter we assess recent experimental evidence concerning the mechanisms by which CO2/H+ stimulates certain classes of brainstem neurone, and then ask whether this qualifies the identification of these neurons as respiratory chemosensors. We begin by considering what the concept of a “respiratory chemosensor” is intended to explain.


Locus Coeruleus Ventrolateral Medulla Intracellular Acidification Hypoglossal Nucleus Hypercapnic Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, W. & Richerson, G.B. (2000). Chemosensitivity of non-respiratory rat CNS neurons in tissue culture.Brain Research860, 119–129.PubMedCrossRefGoogle Scholar
  2. 2.
    Richerson, G.W. (1995). Response to CO2of neurons in the rostral ventral medullain vitro.Journal of Neurophysiology73, 933–944.PubMedGoogle Scholar
  3. 3.
    Pineda, J. & Aghajanian, G. (1997). Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton and polyamine-sensitive inward rectifier potassium current.Neuroscience77, 519–528.CrossRefGoogle Scholar
  4. 4.
    Talky, E.M., Lei, Q., Sirois, J.E., & Bayliss, D.A. (2000). TASK-1, a two-pore domain K+channel, is modulated by multiple neurotransmitters in motoneurones.Neuron25, 399–410.CrossRefGoogle Scholar
  5. 5.
    Kawai, A., Ballantyne, D., Mückenhoff, K. & Scheid, P. (1996). Chemosensitive medullary neurons in the brainstem-spinal cord preparation of the neonatal rat.Journal of Physiology492, 277–292.PubMedGoogle Scholar
  6. 6.
    Ballantyne, D. & Scheid, P. (2000). Mammalian brainstem chemosensitive neurones: linking them to respirationin vitro.Journal of Physiology525, 567–577.PubMedCrossRefGoogle Scholar
  7. 7.
    Iizuka, M. (1999). Intercostal expiratory activity in an in vitro brainstem-spinal cord-rib preparation from the neonatal rat.Journal of Physiology520, 293–302.PubMedCrossRefGoogle Scholar
  8. 8.
    Dean, J.B., Lawing, W.L. & Millhorn, D.L. (1989). CO2decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarius.Experimental Brain Research76, 656–661.CrossRefGoogle Scholar
  9. 9.
    Dean, J.B., Bayliss, D.A., Erickson, J.T., Lawing, W.L. & Millhorn, D.L. (1990). Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input.Neuroscience36, 207–216.PubMedCrossRefGoogle Scholar
  10. 10.
    Huang, R.-Q., Erlichman, J.S. & Dean, J.B. (1997). Cell-cell coupling between CO2-excited neurons in the dorsal medulla.Neuroscience80, 41–57.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, W., Pizzonia, J.H. & Richerson, G.B. (1998). Chemosensitivity of medullary raphe neurones in primary tissue culture.Journal of Physiology511, 433–450.PubMedCrossRefGoogle Scholar
  12. 12.
    Jarolimek, W., Misgeld, U. & Lux, H.D. (1990). Neurons sensitive to pH in slices of the rat ventral medulla.Pflügers Archiv416, 247–253.PubMedCrossRefGoogle Scholar
  13. 13.
    Oyamada, Y., Ballantyne, D., Mückenhoff, K. & Scheid, P. (1998). Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in thein vitrobrainstem-spinal cord of the neonatal rat.Journal of Physiology513, 381–398.PubMedCrossRefGoogle Scholar
  14. 14.
    Oyamada, Y., Andrzejewski, M., Mückenhoff, K., Scheid, P. & Ballantyne, D. (1999). Locus coeruleus neuronsin vitro: pH-sensitive oscillations of membrane potential in an electrically coupled network.Respiration Physiology118, 131–147.PubMedCrossRefGoogle Scholar
  15. 15.
    Bemard,D.G., Li, A. & Nattie, E.E. (1996). Evidence for central chemoreception in the medullary rapheJournal of Applied Physiology52, 131–140.Google Scholar
  16. 16.
    Withington-Wray, D.J.S., Mifflin, S. & Spyer, K.M. (1988). Intracellular analysis of respiratory-modulated hypoglossal motoneurones in the cat.Neuroscience25, 1041–1051.PubMedCrossRefGoogle Scholar
  17. 17.
    Ritucci, N., Dean, J.B. & Putnam, R.W. (1997). Intracellular pH response to hypercapnia in neurons from chemosensitive areas of the medulla.American Journal of Physiology273, R433–441.PubMedGoogle Scholar
  18. 18.
    Ritucci, N., Chambers-Kersh, L., Dean, J.B. & Putnam, R.W. (1998) Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive areas of the medulla.Am. J. Physiol. 275, R1152–1163.PubMedGoogle Scholar
  19. 19.
    Wiemann, M., Baker, R.E., Bonnet, U. & Bingmann, D. (1998). CO2-sensitive medullary neurons: activation by intracellular acidification.Neuroreport9, 167–170.PubMedCrossRefGoogle Scholar
  20. 20.
    Wiemann, M., Schwark, J-R., Bonnet, U., Jansen, H.W., Grinstein, S., Baker, R.E., Lang, H-J., Wirth, K. & Bingmann, D. (1999). Selective inhibition of the Na+/H+exchanger type 3 activates CO2/H+-sensitive medullary neurones.Pflügers Archiv438, 255–252.PubMedCrossRefGoogle Scholar
  21. 21.
    Nichols, C.G. & Lopatin, A.N. (1997). Inward rectifier potassium channels.Annual Review of Physiology59,171–191.PubMedCrossRefGoogle Scholar
  22. 22.
    Coulter, K.L., Périer, F., Radeke, C.M., & Vandenberg, C.A. (1995). Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR.Neuron15, 1157–1168.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu, G., Chanchevalap, S., Cui, N. & Jiang, C. (1999). Effects of intra-and excitracellular acidifications on single channel Kir R2.3 currents.Journal of Physiology516, 699–710.PubMedCrossRefGoogle Scholar
  24. 24.
    Christie,M.J. & Jelinek, H.F. (1993). Dye-coupling among neurns of the rat locus coeruleus during postnatal development.Neuroscience56, 129–137.PubMedCrossRefGoogle Scholar
  25. 25.
    Travagli, R.A., Dunwiddie, T.V. & Williams, J.T. (1995). Opiod inhibition in locus coeruleus.Journal of Neurophysiology74, 519–528.Google Scholar
  26. 26.
    Ishimatsu, M. & Williams, J.T. (1996). Synchronous activity in locus coeruleus results from dendritic interactions in pericoerulear regions.Journal of Neuroscience16, 5196–5204.PubMedGoogle Scholar
  27. 27.
    Smolen, P., Rinzel, J. & Sherman, A. (1993). Why pancreatic islets burst but single BETA cells do not. The heterogeneits hypothesis.Biophysical Journal64, 1668–1680.PubMedCrossRefGoogle Scholar
  28. 28.
    Manor, Y., Rinzel, J., Segev, I., & Yarom, Y. (1997). Low amplitude oscillation in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities.Journal of Neurophysiology77, 2736–2752.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • David Ballantyne
  • Peter Scheid
    • 1
  1. 1.Institut für PhysiologieRuhr-Universität BochumBochumGermany

Personalised recommendations