Neurogenesis of the Respiratory Pattern: Insights from Computational Modeling

  • Ilya A. Rybak
  • Julian F. R. Paton
  • James S. Schwaber
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 499)


The primary respiratory rhythm generator is located in a relatively small area of the lower brainstem and can be defined by the neuronal properties and synaptic interactions within this limited area. The genesis and control of the respiratory motor pattern involve a complex cross-level integration of cellular, network and systems mechanisms. Computational modeling is a powerful method that allows linking experimental data related to different levels of system organization. Therefore, a comprehensive computational model can provide useful insights for understanding the multilevel neural mechanisms involved in generation and control of the respiratory pattern. Our ultimate goal is to develop such a model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. Richter, in: Comprehensive Human Physiology, edited by R. Gregor and U. Windhorst (Springer-Verlag, Berlin, 1996, vol. II), pp. 2079–2095.Google Scholar
  2. 2.
    D. Richter, D. Ballantyne, and J. E. Remmers, How is the respiratory rhythm generated? A model, News Physiol. Sci. 1, 109–112 (1986).Google Scholar
  3. 3.
    M. I. Cohen, Neurogenesis of respiratory rhythm in the mammal, Physiol. Rev. 59, 1105–1173 (1979).PubMedGoogle Scholar
  4. 4.
    M. I. Cohen and J. L. Feldman, Models of respiratory phase-switching, Federation Proc. 36, 2367–2374 (1977).Google Scholar
  5. J. L. Feldman, in: Handbook of Physiology, edited by F. E. Bloom (Am. Physiol. Soc., Bethesda, MD, 1986, sec. 1, vol. 4), pp. 463–524.Google Scholar
  6. 6.
    S. Klages, M. C. Bellingham, and D. W. Richter, Late expiratory inhibition of stage 2 expiratory neurons in the cat - A correlate of expiratory termination, J. Physiol. Lond. 70, 1307–1315 (1993).Google Scholar
  7. 7.
    C. von Euler, in: Handbook of Physiology. The Respiratory System II, edited by N. S. Cherniack and J. G. Widdicombe (Am. Physiol. Soc., Washington, DC, 1986), pp. 1–67.Google Scholar
  8. 8.
    D. Richter, D. Ballantyne, and J. E. Remmers, The differential organization of medullary post-inspiratory activities, Pflügers Arch. 410, 420–427 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    F. J. Clark and C. von Euler, On the regulation of depth and rate of breathing, J. Physiol. Lond. 222 267295 (1972).Google Scholar
  10. 10.
    D. Paydarfar, F. L. Eldridge, and J. P. Kiley, Resetting of mammalian respiratory rhythm: existence of a phase singularity, Am. J. Physiol. 250, R721–R727 (1986).PubMedGoogle Scholar
  11. 11.
    F. L. Eldridge, The importance of timing on the respiratory effects of intermittent carotid sinus nerve stimulation, J. Physiol. Lond. 222, 297–318 (1972).PubMedGoogle Scholar
  12. 12.
    F. L. Eldridge, Expiratory effects of brief carotid sinus nerve and carotid body stimulations, Resp. Physiol. 26, 395–410 (1976).CrossRefGoogle Scholar
  13. J. E. Remmers, D. W. Richter,.D. BallantyneGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ilya A. Rybak
    • 1
  • Julian F. R. Paton
    • 2
  • James S. Schwaber
    • 3
  1. 1.School of Biomedical Engineering, Science and Health Systems, Drexel UniversityPhiladelphiaUSA
  2. 2.Department of PhysiologySchool of Medical Sciences, University of BristolBristolUSA
  3. 3.Department of PathologyAnatomy, and Cell Biology, Thomas Jefferson Medical SchoolPhiladelphiaUSA

Personalised recommendations