Skip to main content

Unstable Breathing Rhythms and Quasiperiodicity in the Pre-Bötzinger Complex

  • Chapter
Frontiers in Modeling and Control of Breathing

Abstract

Breathing in neonatal mammals is notoriously unstable, which can impair normal ventilatory function. Do unstable breathing patterns arise from deterministic mechanisms in the central nervous system? To address this question we examined unstable respiratory patterns using in vitro preparations from neonatal and embryonic rodents that isolate the brain stem kernel containing networks that generate and control breathing’. We also analyzed patterns of ventilation in neonates in vivo and in simulations of rhythm generation using a mathematical model of the kernel2. In all of these studies inspiratory rhythms showed evidence of quasiperiodicity, and in some cases the “quasiperiodic transition to chaos” identified in oscillatory dynamical systems by Ruelle and Takens3. In the quasiperiodic regime the inspiratory pattern undergoes amplitude modulation that becomes increasingly disordered and unstable as neuronal excitability is elevated, and leads to chaos-like states of irregular respiratory rhythm. We found that quasiperiodic activity is an intrinsic property of the developing respiratory network that originates in the pre-Bötzinger complex (pre-BötC), the proposed site for respiratory rhythm generation in mammals4. Electrophysiological and computational analyses showed that quasiperiodicity can arise in the pre-BötC from rhythm-generating neurons with intrinsic oscillatory bursting-pacemaker properties5, thus we identify a potential mechanism for the onset of deterministic respiratory instability in immature mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Smith, J. J. Greer, G. S. Liu and J. L. Feldman, Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity, J. Neurophysiol. 64(4), 1149–1169 (1990).

    PubMed  CAS  Google Scholar 

  2. R. J. Butera, Jr., J. Rinzel and J. C. Smith, Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons, J Neurophysiol 82(1), 398–415 (1999).

    PubMed  Google Scholar 

  3. D. Ruelle and F. Takens, On the nature of turbulence, Commun Math Phys 20, 167–192 (1971).

    Article  Google Scholar 

  4. J. C. Smith, H. H. Ellenberger, K. Ballanyi, D. W. Richter and J. L. Feldman, Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals, Science 254(5032), 726–729 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. N. Koshiya and J. C. Smith, Neuronal pacemaker for breathing visualized in vitro, Nature 400(6742), 360–363 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. A. H. Nayfeh and B. Balachandran, Applied nonlinear dynamics: analytical,computational, and experimental methods (Wiley, New York, 1995).

    Book  Google Scholar 

  7. T. Sauer, J. Yorke and M. Casdagli, Embedology, J Stat Phys 65(3/4), 579–616 (1991).

    Article  Google Scholar 

  8. B. D. Ripley, Spatial Statistics (John Wiley & Sons, New York, 1981).

    Book  Google Scholar 

  9. C. Grebogi, E. Ott and J. A. Yorke, Are three-frequency quasiperiodic orbits to be expected in typical nonlinear dynamical systems, Phys Rev Lett 51(5), 339–342 (1983).

    Article  Google Scholar 

  10. C. A. Del Negro, S. M. Johnson, R. J. Butera and J. C. Smith, Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions, J Neurophysiol (submitted for publication, 2000).

    Google Scholar 

  11. R. J. Butera, Jr., J. Rinzel and J. C. Smith, Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons, J Neurophysiol 82(1), 382–397 (1999).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Del Negro, C.A., Wilson, C.G., Butera, R.J., Koshiya, N., Johnson, S.M., Smith, J.C. (2001). Unstable Breathing Rhythms and Quasiperiodicity in the Pre-Bötzinger Complex. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics