Skip to main content

Respiratory Control of Hypoglossal Motoneurons

  • Chapter
Frontiers in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 499))

Abstract

Hypoglossal motoneurons innervate the tongue muscles1which participate in a variety of motor tasks, including breathing.2Understanding the respiratory control of hypoglossal motoneurons is essential because of their critical involvement in maintaining airway patency during normal breathing, and their putative role in the pathogenesis of obstructive sleep apnea.3, 4Despite such importance in both normal and altered physiological states, virtually nothing is known about how respiratory rhythm is transmitted to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. G. Dobbins, and J. L. Feldman, Differential innervation of protruder and retractor muscles of the tongue in ratJ. Comp. Neurol. 357376–394 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. A. A. Lowe, The neural regulation of tongue movementsProg. Neurobiol. 15, 295–344 (1981).

    Article  Google Scholar 

  3. J. E. Remmers, W. J. de Groot, E. K. Sauerland, and A. M. Anch, Pathogenesis of upper airway occlusion during sleepJ. Appl. Physiol. 44, 931–938 (1978).

    PubMed  CAS  Google Scholar 

  4. R. F. Fregosi, and D. D. Fuller, Respiratory-related control of extrinsic tongue muscle activityRespir. Physiol. 110295–306 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. R. C. Borke, E. Martin, and R. L. Ringler Jr., Brain stem afferents of hypoglossal neurons in the ratBrain Res. 26947–55 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. G. Ugolini, Specificity of rabies virus as a transneuronal tracer of motor networks: Transfer from hypoglossalmotoneurons to connected second-order and higher order central nervous system cells groupsJ. Comp. Neurol. 356457–480 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. Y.-Q. Li, M. Takada, and N. Mizuno, Identification of premotor interneurons which project bilaterally to the trigeminal motor, facial or hypoglossal nuclei: A fluorescent retrograde double-labeling study in the ratBrain Res. 611160–164 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Sahara, N. Hashimoto, and Y. Nakamura, Hypoglossal premotor neurons in the rostral medullary parvocellular reticular formation participate in cortically-induced rhythmical tongue movementsNeurosci. Res. 26, 119–131 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. G. Holstege, H. G. J. M. Kuypers, and J. J. Dekker, The organization of the bublar fibre connections to the hypoglossal motor nucleiBrain 100, 256–286 (1977).

    Google Scholar 

  10. M. Takada, K. Itoh, Y. Yasui, A. Mitani, S. Nomura, and N. Mizuno, Distribution of premotor neurons for the hypoglossal nucleus in the catNeurosci. Lett. 52, 141–146 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. T. Ono, Y. Ishiwata, N. Inaba, T. Kuroda, and Y. Nakamura, Hypoglossal premotor neurons with rhythmical inspiratory-related activity in the cat: Localization and projection to the phrenic nucleusExp. Brain Res. 981–12 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. T. Ono, Y. Ishiwata, N. Inaba, T. Kuroda, and Y. Nakamura, Modulation of the inspiratory-related activity of hypoglossal premotor neurons during ingestion and rejection in the decerebrate catJ. Neurophysiol. 80, 48–58 (1998).

    PubMed  CAS  Google Scholar 

  13. G. F. Tian, and J. Duffin, Connections from upper cervical inspiratory neurons to phrenic and intercostal motoneurons studied with cross-correlation in the decerebrate ratExp. Brain Res. 110196–204 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. T. A. Sears, and D. Stagg, Short-term synchronization of intercostal motoneurone activityJ. Physiol. 263357–381 (1976).

    PubMed  CAS  Google Scholar 

  15. K. Graham, and J. Duffin, Cross correlation of medullary expiratory neurons in the catExptl. Neurol. 73, 451–464 (1981).

    Article  CAS  Google Scholar 

  16. M. A. Douse, J. Duffin, D. Brooks, and L. Fedorko, Role of upper cervical inspiratory neurons studied by cross-correlation in the catExp. Brain Res. 90153–162 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. G. F. Tian, J. H. Peever, and J. Duffin, Bötzinger-complex expiratory neurons monosynaptically inhibit phrenic motoneurons in the decerebrate ratExp. Brain Res. 122, 149–156 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. J. D. Green, and K. Negishi, Membrane potentials in hypoglossal motoneuronsJ. Neurophysiol. 26, 835–856 (1963).

    PubMed  CAS  Google Scholar 

  19. T. Sumi, Functional differentiation of hypoglossal neurons in catsJpn. J. Physiol. 1955–67 (1969).

    Article  PubMed  CAS  Google Scholar 

  20. G. Woch, and L. Kubin, Non-reciprocal control of rhythmic activity in respiratory-modulated XII motoneuronsNeuroReport 6, 2085–2088 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. D. J. Withington-Wray, S. W. Mifflin, and K. M. Spyer, Intracellular analysis of respiratory-modulated hypoglossal motoneurons in the catNeuroscience 25, 1041–1051 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. G. F. Tian, J. H. Peever, and J. Duffin, Bötzinger-complex, bulbospinal expiratory neurons monosynaptically inhibit ventral-group respiratory neurons in the decerebrate ratExp. Brain Res. 124173–180 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. T. B. Boone, and L. D. Aides, The ultrastructure of two distinct neuron populations in the hypoglossal nucleus of the ratExp. Brain Res. 54321–326 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. N. Takasu, and P. H. Hashimoto, Morphological identification of an interneuron in the hypoglossal nucleus of the rat: A combined golgi-electron microscopic studyJ. Comp. Neurol. 271461–471 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. M. N. Cooper, The hypoglossal nucleus of the primate: A golgi studyNeurosci. Lett. 21, 249–254 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peever, J.H., Duffin, J. (2001). Respiratory Control of Hypoglossal Motoneurons. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics