The Transforming Growth Factors Beta in Development and Functional Differentiation of the Mouse Mammary Gland

  • Charles W. Daniel
  • Stephen Robinson
  • Gary B. Silberstein
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 501)


The transforming growth factors beta (TGF-ß) are multifunctional regulators with diverse effects on a variety of developmental processes and differentiated functions. In the mammary gland, a considerable amount of evidence has accumulated indicating that TGF- 3 plays a critical role during several phases of the mammary cycle. TGF-(3 regulates growth and patterning of the mammary ductal tree in the virgin mouse. During pregnancy, TGF-ß is required for alveolar development and functional differentiation, while at the same time inhibiting secretion of milk proteins. At parturition this inhibition is lifted, permitting initiation of lactation.


Mammary Gland Functional Differentiation Mouse Mammary Tumor Virus Mouse Mammary Gland Alveolar Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barcellow-Hoff MH. Latency and activation in the control of TGF-3. J Mammary Gland Biol Neoplasia 1996;1:353–363.CrossRefGoogle Scholar
  2. Daniel CW, DeOme KB, Young JT, Blair PB, Faulkin LJ. Thein vivolifespan of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proc Natl Acad Sci USA 1968;61:52–60.CrossRefGoogle Scholar
  3. Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S. TGF-ßl-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol 1989;135:20–30.PubMedCrossRefGoogle Scholar
  4. Daniel CW, Robinson S, Silberstein GB. The role of TGF-3 in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia 1996;1:331–341.PubMedCrossRefGoogle Scholar
  5. Gorska AE, Serra R, Chen R-H, Derynck R, Moses HL. Mammary gland development in transgenic mice expressing a dominant-negative transforming growth factor-beta type II receptor under the control of the mouse mammary tumor virus promoter/enhancer. Proc Amer Assoc Cancer Res 1995;36:188.Google Scholar
  6. Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen L, Roberts AB, Smith GH, Merlino G. Targeting expression of a transforming growth factor (31 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J 1993;12:1835–1845.PubMedGoogle Scholar
  7. Kingsley D. The TGF-(3 superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133–146.PubMedCrossRefGoogle Scholar
  8. Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF-(31 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol 1995;168:47–61.PubMedCrossRefGoogle Scholar
  9. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward MJ, Karlsson SD et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993;90:770–774.PubMedCrossRefGoogle Scholar
  10. Mieth M, Boehmer F-D, Bal R, Groner B, Grosse R. Transforming growth factor-beta inhibits lactogenic hormone induction of beta-casein expression in HC11 mouse mammary epithelial cells. Growth Factors 1990;4:9–15.PubMedCrossRefGoogle Scholar
  11. Okamoto S, Oka T. Evidence for physiological function of epidermal growth factor: Pregestational sialoadenectomy of mice decreases milk production and increases offspring mortality during lactation period. Proc Natl Acad Sci USA 1984;81:6059–6063.PubMedCrossRefGoogle Scholar
  12. Pierce DF Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, Daniel CW, Hogan BL, Moses HL. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-betal. Genes Dev 1993;7:2308–2317.PubMedCrossRefGoogle Scholar
  13. Pierce DF Jr, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ Jr, Moses HL. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA 1995; 92:4254–4258.PubMedCrossRefGoogle Scholar
  14. Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 1995;11:409–414.PubMedCrossRefGoogle Scholar
  15. Roberts A, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl J et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesisin vivoand stimulation of collagen formationin vitro.Proc Natl Acad Sci USA 1988; 83:4167–4171.CrossRefGoogle Scholar
  16. Roberts AB, Flanders KC, Heine UI, Jakowlew S, Kondaiah P, Kim S-J, Sporn MB. Transforming growth factor-beta: multifunctional regulator of differentiation and development. Proc Royal Soc London Series B 1990;327:145–154.Google Scholar
  17. Roberts AB, Kim SJ, Noma T, Glick AB, Lafyatis R, Lechleider R, Jakowlew SB, Geiser A, O’Reilly MA, Danielpour D et al. Multiple forms of TGF-beta: distinct promotors and differential expression. Ciba Fndn Symp 1991;157:7–28.Google Scholar
  18. Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 1991;113:867–878.PubMedGoogle Scholar
  19. Robinson SD, Roberts AB, Daniel CW. TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy. J Cell Biol 1993;120:245–251.PubMedCrossRefGoogle Scholar
  20. Silberstein GB, Daniel CW. Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science 1987;237:291–293.CrossRefGoogle Scholar
  21. Silberstein GB, Strickland P, Coleman S, Daniel CW. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol 1990; 110:2209–2219.PubMedCrossRefGoogle Scholar
  22. Silberstein, GB, Flanders KC, Roberts AB, Daniel CW. Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev Biol 1992;152:354–362.PubMedCrossRefGoogle Scholar
  23. Smith GH. TGF-beta and functional differentiation. J Mammary Gland Biol Neoplasia 1996;1:343–352.PubMedCrossRefGoogle Scholar
  24. Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 1992;115:49–58.PubMedGoogle Scholar
  25. Sudlow AW, Wilde CJ, Burgoyne RD. Transforming growth factor ßl inhibits casein secretion from differentiating mammary gland explants but not from lactating mammary cells. Biochem J 1994; 304:333–336.PubMedGoogle Scholar
  26. Yamamoto T, Komura H, Morishige K, Tadokoro C., Sakata M, Kuirachi H, Miyake A. Eur J Endocrinol 1994;130:302–307.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Charles W. Daniel
    • 1
  • Stephen Robinson
    • 1
  • Gary B. Silberstein
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations