Human Milk and the Response of Intestinal Epithelium to Infection

  • Kathrin Bernt
  • W. Allan Walker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 501)


The discussion about breast-feeding vs. formula is not an invention of modern times. Its roots go back to ancient times, and we find recommendations to delay breast-feeding from Indian authors as early as 1500 BC. During these centuries, philosophical theories and mythology, rather than facts about nutrition or immunology, dominated this dispute. Important revisions of pathologic concepts at the end of the 19thcentury allowed a scientific evaluation of the benefits of breast-feeding. The finding that infectious diseases were caused by microorganisms provided the basis for the idea that human milk might help the neonate to overcome these illnesses. Paul Ehrlich, coworker of Robert Koch and one of the most important microbiologists and immunologists in medical history, was the first to show the transfer of maternal antibodies to the neonate by human milk (Ehrlich & Hubner 1892; Brieger & Ehrlich 1893). Since then a variety of other immunologically active components have been described in human milk and evidence is accumulating that human milk may also exert active immunostimulatory and immunomodulatory functions and help the development of the child’s own mucosal immune system


Human Milk Intestinal Epithelium Bovine Colostrum Breastfed Infant Mature Milk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adinolfi M, Glynn AA, Lindsay M, Milne CM. Serological properties of gamma-A antibodies to Escherichia coli present in human colostrum. Immunology 1966;10:517–526.PubMedGoogle Scholar
  2. Adu FD, Adeniji JA. Measles antibodies in the human milk of nursing mothers. Afr J Med Sci 1995;24:385–388.Google Scholar
  3. Andersson B, PorrasOHanson LA, Lagergard T, Svanborg-Eden C. Inhibition of attachment ofStreptococcus pneumoniaeandHaemophilus influenzaeby human milk and receptor oligosaccharides. J Infect Dis 1986;153:232–237.PubMedCrossRefGoogle Scholar
  4. Avery VM, Gordon DL. Antibacterial properties of breast milk: requirements for surface phagocytosis and chemiluminescence. Eur J Clin Microbiol Infect Dis 1991;10:1034–1039.PubMedCrossRefGoogle Scholar
  5. Bellamy W, Wakabayashi H, Takase M, Kawase K, Shimamura S, Tomita M. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med Microbiol Immunol (Berl) 1993a;182:97–105.CrossRefGoogle Scholar
  6. Bellamy WR, Wakabayashi H, Takase M, Kawase K, Shimamura S, Tomita M. Role of cell-binding in the antibacterial mechanism of lactoferricin B. J Appl Bacteriol 1993b;75:478–484.PubMedGoogle Scholar
  7. Berkhout B, Derksen GC, Back NK, Klaver B, de Kruif CG, Visser S. Structural and functional analysis of negatively charged milk proteins with anti-HIV activity. AIDS Res Hum Retroviruses 1997;13: 1101–1107.PubMedCrossRefGoogle Scholar
  8. Bertotto A, Gerli R, Fabietti G, Crupi S, Arcangeli C, Scalise F, Vaccaro R. Human breast milk T lymphocytes display the phenotype and functional characteristics of memory T cells. Eur J Immunol 1990;20:1877–1880.PubMedCrossRefGoogle Scholar
  9. Bertotto A, Castellucci G, Radicioni M, Bartolucci M, Vaccaro R. CD40 ligand expression on the surface of colostral T cells. Arch Dis Child Fetal Neonatal Ed 1996;74:F135–136.PubMedCrossRefGoogle Scholar
  10. Bertotto A, Gerli R, Castellucci G, Scalise F, Vaccaro R. Human milk lymphocytes bearing the gamma/delta T-cell receptor are mostly delta TCSI-positive cells. Immunology 1991;74:360–361.Google Scholar
  11. Bertotto A, Castellucci G, Radicioni M, Bartolucci M, Vaccaro R. CD40 ligand expression on the surface of colostral T cells. Arch Dis Child Fetal Neonatal Ed 1996;74:F135–136.PubMedCrossRefGoogle Scholar
  12. Bhan MK, Bhandari N, Bhatnagar S, Bahl R. Epidemiology management of persistent diarrhoea in children of developing countries. Indian J Med Res 1996;104:103–114.PubMedGoogle Scholar
  13. Bjorge L, Jensen TS, Kristoffersen EK, Ulstein M, Matre R. Identification of the complement regulatory protein CD59 in human colostrum and milk. Am J Reprod Immunol 1996;35:43–50.PubMedCrossRefGoogle Scholar
  14. Brieger L, Ehrlich P. Beiträge zur Kenntniss der Milchimmunisierter Tiere [Contributions to the knowledge of the milk of immunized animals]. Volume 2, Collected Papers, pp 48–55. Z Hyg 1893;13:336.Google Scholar
  15. Brugnoni D, Airo P, Graf D, Marconi M, Lebowitz M, Plebani A, Giliani S, Malacarne F, Cattaneo R, Ugazio AG, et al. Ineffective expression of CD40 ligand on cord blood T cells may contribute to poor immunoglobulin production in the newborn. Eur J Immunol 1994;24:1919–1924.PubMedCrossRefGoogle Scholar
  16. Buescher ES, McIlheran SM. Polymorphonuclear leukocytes and human colostrum: effects of in vivo and in Vitro exposure. J Pediatr Gastroenterol Nutr 1993;17:424–433.PubMedCrossRefGoogle Scholar
  17. Buescher ES, Malinowska I. Soluble receptors and cytokine antagonists in human milk. Pediatr Res 1996;40:839–844.PubMedCrossRefGoogle Scholar
  18. Chong DK, Roberts W, Arakawa T, Illes K, Bagi G, Slattery CW, Langridge WH. Expression of the human milk protein beta-casein in transgenic potato plants. Transgenic Res 1997;6:289–296.PubMedCrossRefGoogle Scholar
  19. Chu SH, Walker WA. Developmental changes in the activities of sialyl-and fucosyltransferases in rat small intestine. Biochim Biophys Acta 1986;883:496–500.PubMedCrossRefGoogle Scholar
  20. Chu SH, Walker WA. Bacterial toxin interaction with the developing intestine. Gastroenterology 1993;104: 916–925.PubMedGoogle Scholar
  21. Crouch SP, Slater KJ, Fletcher J. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 1992;80:235–240.PubMedGoogle Scholar
  22. D’Ostilio N, Sabatino G, Natoli C, Ullrich A, Iacobelli S. 90K (Mac-2 BP) in human milk. Clin Exp Immunol 1996;104:543–546.PubMedCrossRefGoogle Scholar
  23. Delneri MT, Carbonare SB, Silva ML, Palmeira P, Carneiro-Sampaio MM. Inhibition of enteropathogenic Escherichia coli adhesion to HEp-2 cells by colostrum and milk from mothers delivering low-birthweight neonates. Eur J Pediatr 1997;156:493–498.PubMedCrossRefGoogle Scholar
  24. Donne A. Course de Microscopie. Volume 1. Bonn, Germany: Ballierre; 1844.Google Scholar
  25. Duchen K, Bjorksten B. Total IgE levels in human colostrum. Pediatr Allergy Immunol 1996;7:44–47.PubMedCrossRefGoogle Scholar
  26. Eibl MM, Wolf HM, Furnkranz H, Rosenkranz A. Prevention of necrotizing enterocolitis in low-birth-weight infants by IgA-IgG feeding. N Engl J Med 1988;319:1–7.PubMedCrossRefGoogle Scholar
  27. el-Mohandes AE, Picard MB, Simmens SJ, Keiser JF. Use of human milk in the intensive care nursery decreases the incidence of nosocomial sepsis. J Perinatol 1997;17:130–134.PubMedGoogle Scholar
  28. Ellison RT 3`d, Giehl TJ, LaForce FM. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun 1988;56:2774–2781.PubMedGoogle Scholar
  29. Frenck RW, Sarman G, Harper TE, Buescher ES. The ability of recombinant murine granulocyte-macrophage colony-stimulating factor to protect neonatal rats from septic death due to Staphylococcus aureus. J Infect Dis 1990;162:109–114.PubMedCrossRefGoogle Scholar
  30. Fujihara T, Hayashi K. Lactoferrin inhibits herpes simplex virus type-1 (HSV-1) infection to mouse cornea. Arch Virol 1995;140:1469–1472.PubMedCrossRefGoogle Scholar
  31. Fujiwara S, Hashiba H, Hirota T, Forstner JF. Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Appl Environ Microbiol 1997;63:506–512.PubMedGoogle Scholar
  32. Glass RI, Svennerholm AM, Stoll BJ, Khan MR, Hossain KM, Huq MI, Holmgren J. Protection against cholera in breast-fed children by antibodies in breast milk. N Engl J Med 1983;308:1389–1392.PubMedCrossRefGoogle Scholar
  33. Goldman AS, Garza C, Schanler RJ, Goldblum RM. Molecular forms of lactoferrin in stool and urine from infants fed human milk. Pediatr Res 1990;27:252–255.PubMedCrossRefGoogle Scholar
  34. Grazioso CF, Buescher ES. Inhibition of neutrophil function by human milk. Cell Immunol 1996; 168:125–132.PubMedCrossRefGoogle Scholar
  35. Grover M, Giouzeppos O, Schnagl RD, May JT. Effect of human milk prostaglandins and lactoferrin on respiratory syncytial virus and rotavirus. Acta Paediatr 1997;86:315–316.PubMedCrossRefGoogle Scholar
  36. Hahn-Zoric M, Fulconis F, Minoli I, Moro G, Carlsson B, Bottiger M, Raiha N, Hanson LA. Antibody responses to parenteral and oral vaccines are impaired by conventional and low protein formulas as compared to breast-feeding. Acta Paediatr Scand 1990;79:1137–1142.PubMedCrossRefGoogle Scholar
  37. Harmsen MC, Swart PJ, de Bethune M-P, Pauwels R, De Clercq E, The H, Mekjer DKF. Antiviral effects of plasma and milk proteins: Lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J Infect Dis 1995;172:380–388.PubMedCrossRefGoogle Scholar
  38. Hashizume S, Kuroda K, Murakami H. Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochim Biophys Acta 1983;763:377–382.PubMedCrossRefGoogle Scholar
  39. Hasselbalch H, Jeppesen DL, Engelmann MD, Michaelsen KF, Nielsen MB. Decreased thymus size in formula-fed infants compared with breastfed infants. Acta Paediatr 1996;85:1029–1032.PubMedCrossRefGoogle Scholar
  40. Hawes CS, Jones WR. Human milk cell migration and production of monocyte chemotactic factor: lack of activity. Pediatr Res 1985;19:996–999.PubMedCrossRefGoogle Scholar
  41. He J, Furmanski P. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 1995;373:721–724.PubMedCrossRefGoogle Scholar
  42. Heegaard CW, Larsen LB, Rasmussen LK, Hojberg KE, Petersen TE, Andreasen PA. Plasminogen activation system in human milk. J Pediatr Gastroenterol Nutr 1997;25:159–166.PubMedCrossRefGoogle Scholar
  43. Holmgren J, Svennerholm A-M, Lindblad M. Receptor-like glycocompounds in human milk that inhibit classical and El TorVibrio choleraecell adherence (hemagglutination). Infect Immun 1983; 39:147–154.PubMedGoogle Scholar
  44. Honorio-Franca AC, Carvalho MP, Isaac L, Trabulsi LR, Carneiro-Sampaio MM. Colostral mononuclear phagocytes are able to kill enteropathogenic Escherichia coli opsonized with colostral IgA. Scand J Immunol 1997;46:59–66.PubMedCrossRefGoogle Scholar
  45. Hooton JW, Pabst HF, Spady DW, Paetkau V. Human colostrum contains an activity that inhibits the production of IL-2. Clin Exp Immunol 1991;86:520–524.PubMedCrossRefGoogle Scholar
  46. Israel EJ, Schiffrin EJ, Carter EA, Freiberg E, Walker WA. Prevention of necrotizing enterocolitis in the rat with prenatal cortisone. Gastroenterology 1990;99:1333–1338.PubMedGoogle Scholar
  47. Jagadeesan V, Reddy V. C3 in human milk. Acta Paediatr Scand 1978;67:237–238.PubMedCrossRefGoogle Scholar
  48. Jain L, Vidyasagar D, Xanthou M, Ghai V, Shimada S, Blend M. In vivo distribution of human milk leucocytes after ingestion by newborn baboons. Arch Dis Child 1989;64:930–933.PubMedCrossRefGoogle Scholar
  49. Jensen OM, Paerregaard A. Inhibition of plasmid-encoded adhesion of Yersinia enterocolitica by nonimmunoglobulin fraction of human milk. APMIS 1991;99:657–660.PubMedCrossRefGoogle Scholar
  50. Jertborn M, Svennerholm AM, Holmgren J. Saliva, breast milk, and serum antibody responses as indirect measures of intestinal immunity after oral cholera vaccination or natural disease. J Clin Microbiol 1986;24:203–209.PubMedGoogle Scholar
  51. Keeney SE, Schmalstieg FC, Palkowetz KH, Rudloff HE, Le BM, Goldman AS. Activated neutrophils and neutrophil activators in human milk: increased expression of CD1 lb and decreased expression of L-selectin. J Leukoc Biol 1993;54:97–104.PubMedGoogle Scholar
  52. Keller MA, Faust J, Rolewic LJ, Stewart DD. T cell subsets in human colostrum. J Pediatr Gastroenterol Nutr 1986;5:439–443.PubMedCrossRefGoogle Scholar
  53. Kidwell WR, Salomon DS, Mohanam S, Bell GI. Production of growth factors by normal human mammary cells in culture. In: Goldman AS, Hanson LA, editors. Human Lactation 3. The Effects of human Milk on the Recipient Infant. New York: Plenum Press, 1987. pp 227–240.Google Scholar
  54. Kit Y, Semenov DV, Nevinsky GA. Phosphorylation of different human milk proteins by human catalytic secretory immunoglobulin A. Biochem Mol Biol Int 1996;39:521–527.PubMedGoogle Scholar
  55. Kleinman RE, Walker WA. The enteromammary immune system: an important new concept in breast milk host defense. Dig Dis Sci 1979;24:876–882.PubMedCrossRefGoogle Scholar
  56. Kornfeld SJ, Plaut AG. Secretory immunity and the bacterial IgA proteases. Rev Infect Dis 1981;3:521–534.PubMedCrossRefGoogle Scholar
  57. Lahov E, Regelson W. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 1996;34:131–145.PubMedCrossRefGoogle Scholar
  58. Lawton JW, Shortridge KR Protective factors in human breast milk and colostrum [letter]. Lancet 1977;1:253.PubMedCrossRefGoogle Scholar
  59. Lee SI, Heiner DC, Wara D. Development of serum IgG subclass levels in children. Monogr Allergy 1986;19:108–121.PubMedGoogle Scholar
  60. Mahmood A, Torres-Pinedo R. Effect of hormone administration on the sialylation and fucosylation of intestinal microvillus membranes of suckling rats. Pediatr Res 1985;19:899–902.PubMedCrossRefGoogle Scholar
  61. Mandalapu P, Pabst HF, Paetkau V. A novel immunosuppressive factor in human colostrum. Cell Immunol 1995;162:178–184.PubMedCrossRefGoogle Scholar
  62. Matson DO, O’Ryan ML, Herrera I, Pickering LK, Estes MK. Fecal antibody responses to symptomatic and asymptomatic rotavirus infections. J Infect Dis 1993;167:577–583.PubMedCrossRefGoogle Scholar
  63. Mattsby-Baltzer I, Roseanu A, Motas C, Elverfors J, Engberg I, Hanson LA. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr Res 1996;40:257–262.PubMedCrossRefGoogle Scholar
  64. Mole CM, Montagne PM, Bene MC, Faure GC. Sequential assay of human milk immunoglobulins shows a predominance of lambda chains. Lab Invest 1992;67:147–151.PubMedGoogle Scholar
  65. Moro I, Abo T, Crago SS, Komiyama K, Mestecky J. Natural killer cells in human colostrum. Cell Immunol 1985;93:467–474.PubMedCrossRefGoogle Scholar
  66. Moser I, Schroder WF, Hellmann E. In vitro binding of Campylobacter jejuni/coli outer membrane preparations to INT 407 cell membranes. Med Microbiol Immunol 1992;180:289–303.PubMedCrossRefGoogle Scholar
  67. Murphey DK, Buescher ES. Human colostrum has anti-inflammatory activity in a rat subcutaneous air pouch model of inflammation. Pediatr Res 1993;34:208–212.PubMedCrossRefGoogle Scholar
  68. Mushtaha AA, Schmalstieg FC, Hughes TK Jr, Rajaraman S, Rudloff HE, Goldman AS. Chemokinetic agents for monocytes in human milk: possible role of tumor necrosis factor-alpha. Pediatr Res 1989; 25:629–633.PubMedCrossRefGoogle Scholar
  69. Nakao K, lmotoIIkemura N, Shibata T, Takaji S, Taguchi Y, Misaki M, Yamauchi K, Yamazaki N. Relation of lactoferrin levels in gastric mucosa with Helicobacter pylori infection and with the degree of gastric inflammation. Am J Gastroenterol 1997;92:1005–1011.PubMedGoogle Scholar
  70. Newburg DS, Pickering LK, McCluer RH, Cleary TG. Fucosylated oligosaccharides of human milk protect suckling mice from heat-stabile enterotoxin of Escherichia coli. J Infect Dis 1990;162:1075–1080.PubMedCrossRefGoogle Scholar
  71. Newburg DS, Ashkenazi S, Cleary TG. Human milk contains the Shiga toxin and Shiga-like toxin receptor glycolipid Gb3. J Infect Dis 1992;166:832–836.PubMedCrossRefGoogle Scholar
  72. Nuijens JH, van Berkel PH, Geerts ME, Hartevelt PP, de Boer HA, van Veen HA, Pieper FR. Characterization of recombinant human lactoferrin secreted in milk of transgenic mice. J Biol Chem 1997;272: 8802–8807.PubMedCrossRefGoogle Scholar
  73. Ogra PL. Ontogeny of the local immune system. Pediatrics 1979;64:765–774.PubMedGoogle Scholar
  74. Otnaess AB, Laegreid A, Ertresvag K. Inhibition of enterotoxin from Escherichia cob and Vibrio cholerae by gangliosides from human milk. Infect Immun 1983;40:563–569.PubMedGoogle Scholar
  75. Pabst HF, Spady DW. Effect of breast-feeding on antibody response to conjugate vaccine [see comments]. Lancet 1990;336:269–270.PubMedCrossRefGoogle Scholar
  76. Pabst HF, Godel J, Grace M, Cho H, Spady DW. Effect of breast-feeding on immune response to BCG vaccination. Lancet 1989;1:295–297.PubMedCrossRefGoogle Scholar
  77. Perin NM, Clandinin T, Thomson AB. Importance of milk and diet on the ontogeny and adaptation of the intestine. J Pediatr Gastroenterol Nutr 1997;24:419–425.PubMedCrossRefGoogle Scholar
  78. Petschow BW, Talbott RD. Response of bifidobacterium species to growth promoters in human and cow milk. Pediatr Res 1991;29:208–213.PubMedCrossRefGoogle Scholar
  79. Pickering LK, Morrow AL, Herrera I, O’Ryan M, Estes MK, Guilliams SE, Jackson L, Carter-Campbell S, Matson DO. Effect of maternal rotavirus immunization on milk and serum antibody titers. J Infect Dis 1995;172:723–728.PubMedCrossRefGoogle Scholar
  80. Pitt J, BarlowBHeird WC. Protection against experimental necrotizing enterocolitis by maternal milk. I. Role of milk leukocytes. Pediatr Res 1977;11:906–909.PubMedCrossRefGoogle Scholar
  81. Rohrer L, Winterhalter KH, Eckert J, KohlerP.Killing ofGiardia lambliaby human milk is mediated by unsaturated fatty acids. Antimicrob Agents Chemother 1986;30:254–257.PubMedCrossRefGoogle Scholar
  82. Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH. Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 1994;344:1046–1049.PubMedCrossRefGoogle Scholar
  83. Sambasivarao D, Hooton J, Dost A, Paetkau V. A novel immunosuppressive factor in bovine colostrum blocks activation of the interleukin 2 gene enhancer at the NFAT site. Biochem Cell Biol 1996;74:585–593.PubMedCrossRefGoogle Scholar
  84. Scariati PD, Grummer-Strawn LM, Fein SB. A longitudinal analysis of infant morbidity and the extent of breastfeeding in the United States. Pediatrics 1997;99:E5.PubMedCrossRefGoogle Scholar
  85. Shahid NS, Steinhoff MC, Hoque SS, Begum T, Thompson C, Siber GR. Serum, breast milk, and infant antibody after maternal immunisation with pneumococcal vaccine [see comments]. Lancet 1995;346: 1252–1257.PubMedCrossRefGoogle Scholar
  86. Shau H, Kim A, Golub SH. Modulation of natural killer and lymphokine-activated killer cell cytotoxicity by lactoferrin. J Leukoc Biol 1992;51.Google Scholar
  87. Shinmoto H, Kawakami H, Dosako S, Sogo Y. IgA specific helper factor (alpha HF) in human colostrum. Clin Exp Immunol 1986;66:223–230.PubMedGoogle Scholar
  88. Slade HB, Schwartz SA. Antigen-driven immunoglobulin production by human colostral lymphocytes. Pediatr Res 1989;25:295–299.PubMedCrossRefGoogle Scholar
  89. Smith CW, Goldman AS. The cells of human colostrum. I. In vitro studies of morphology and functions. Pediatr Res 1968;2:103–109.PubMedCrossRefGoogle Scholar
  90. Stahl B, Thurl S, Zeng J, Karas M, Hillenkamp F, Steup M, Sawatzki G. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 1994;223:218–226.PubMedCrossRefGoogle Scholar
  91. Stromqvist M, Falk P, Bergstrom S, Hansson L, Lonnerdal B, Normark S, Hernell O. Human milk kappa-casein and inhibition ofHelicobacter pyloriadhesion to human gastric mucosa. J Pediatr Gastroenterol Nutr 1995;21:288–296.PubMedCrossRefGoogle Scholar
  92. Subiza JL, Rodriguez C, Figueredo A, Mateos P, Alvarez R, de la Concha EG. Impaired production and lack of secretion of interleukin 1 by human breast milk macrophages. Clin Exp Immunol 1988;71:493–496.PubMedGoogle Scholar
  93. Swart PJ, Kuipers ME, Smit C, Pauwels R, deBethune MP, de Clercq E, Meijer DK, Huisman JG. Antiviral effects of milk proteins: acylation results in polyanionic compounds with potent activity against human immunodeficiency virus types 1 and 2 in vitro. AIDS Res Hum Retroviruses 1996;12:769–775.PubMedCrossRefGoogle Scholar
  94. Thorpe LW, Rudloff HE, Powell LC, Goldman AS. Decreased response of human milk leukocytes to chemoattractant peptides. Pediatr Res 1986;20:373–377.PubMedCrossRefGoogle Scholar
  95. Ueda T, Sakamaki K, Kuroki T, Yano I, Nagata S. Molecular cloning and characterization of the chromosomal gene for human lactoperoxidase. Eur J Biochem 1997;243:32–41.PubMedCrossRefGoogle Scholar
  96. Ullrich A, Sures 1, D’Egidio M, Jallal B, Powell TJ, Herbst R, Dreps A, Azam M, Rubinstein M, Natoli C, et al. The secreted tumor-associated antigen 90K is a potent immune stimulator. J Biol Chem 1994;269:18401–18407.PubMedGoogle Scholar
  97. Weaver EA, Tsuda H, Goldblum RM, Goldman AS, Davis CR. Relationship between phagocytosis and immunoglobulin A release from human colostral macrophages. Infect Immun 1982;38:1073–1077.PubMedGoogle Scholar
  98. Wiederschain GY, Newburg DS. Compartmentalization of fucosyltransferase and a-L-fucosidase in human milk. Biochemical and Molecular Medicine 1996;58:211–220.PubMedCrossRefGoogle Scholar
  99. Wirt DP, Adkins LT, Palkowetz KH, Schmalstieg FC, Goldman AS. Activated and memory T lymphocytes in human milk. Cytometry 1992;13:282–290.PubMedCrossRefGoogle Scholar
  100. Yi M, Kaneko S, Yu DY, Murakami S. Hepatitis C virus envelope proteins bind lactoferrin. J Virol 1997;71:5997–6002.PubMedGoogle Scholar
  101. Yolken RH, Peterson JA, Vonderfecht SL, Fouts ET, Midthun K, Newburg DS. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J Clin Invest 1992;90:1984–1991.PubMedCrossRefGoogle Scholar
  102. Zijlstra RT, Odle J, Hall WF, Petschow BW, Gelberg HB, Litov RE. Effect of orally administered epidermal growth factor on intestinal recovery of neonatal pigs infected with rotavirus. J Pediatr Gastroenterol Nutrition 1994;19:382–390.CrossRefGoogle Scholar
  103. Zucali JR, Broxmeyer HE, Levy D, Morse C. Lactoferrin decreases monocyte-induced fibroblast production of myeloid colony-stimulating activity by suppressing monocyte release of interleukin-l. Blood 1989;74:1531–1536.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kathrin Bernt
    • 1
    • 2
  • W. Allan Walker
    • 1
  1. 1.Developmental Gastroenterology Laboratory and Mucosal Immunology Laboratory Combined Program in Pediatric Gastroenterology and Nutrition Massachusetts General HospitalThe Children’s HospitalBostonUSA
  2. 2.East Humboldt University of BerlinBerlinGermany

Personalised recommendations