Skip to main content

Elements of Signal Transduction Involved in Thylakoid Membrane Dynamics

  • Chapter
Signal Transduction in Plants

Abstract

Photosynthesis, the most fundamental biochemical process for maintenance of life and the only renewable energy source of our planet, is a highly regulated, but also one of the most light- and heat-sensitive processes in plants and cyanobacteria (Berry and Björkman 1980, Weis and Berry 1988, Havaux and Tardy 1996). Light, obviously, is not only useful, but can also cause problems, and even exert harm to a plant. In their natural habitat, plants are exposed to light intensity and quality changes that can lead to an imbalance between the excitation rates of the two photosystems, and thus diminish photosynthetic efficiency. Light can also induce photoinactivation of electron transport and damage both photosystems (Prasil et al 1992, Aro et al 1993, Sonoike 1995). Comparably, high temperatures dramatically inhibit carbon dioxide fixation (Berry and Björkman 1980, Feller et al 1998), and the heat tolerance limits of leaves, which possess surprisingly little heat capacity, can depend on the thermal sensitivity of photochemical reactions in thylakoid membranes (Berry and Björkman 1980, Weis and Berry 1988, Havaux and Tardy 1996). Even short exposure to increasing temperatures in the range of 40°C can cause a progressive destacking of stacked thylakoids (Gounaris et al 1984), a lateral redistribution of the membrane protein complexes (Sundby et al 1986) that constitute this membrane (Herrmann et al 1991), an increase in the ionic permeability and fluidity of the membrane (Havaux et al 1996, Tardy and Havaux 1997), rapid dephosphorylation and degradation of the photosystem II core protein Dl (Rokka et al 2000), and a release of extrinsic proteins of the photosystem II oxygen-evolving complex (Enami et al 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, Z., 1996, Protein stability and degradation in chloroplasts. Plant Mol. Biol. 32: 773–783.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J.F., 1992, Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys.Acta 1098: 275–335.

    Article  CAS  Google Scholar 

  • Andersson, B. and Anderson, J. M., 1980, Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membrane of spinach chloroplasts. Biochim.Biophys. Acta 593: 427 — 440.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, B., and Aro, E.-M., 1997, Proteolytic activities and proteases of plant chloroplasts. Physiol. Plant. 100: 780–793.

    Article  CAS  Google Scholar 

  • Aro, E.-M., Virgin, I., and Andersson, B., 1993, Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochem Biophys. Acta 1143: 113–134.

    Article  PubMed  CAS  Google Scholar 

  • Barber, J., Nield, J., Morris, E.P., Zheleva, D., and Hankamer, B., 1997, The structure, function and dynamics of photosystem two. Physiol. Plant. 100: 817–827.

    Article  CAS  Google Scholar 

  • Barford, D., 1996, Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem.Sci. 21: 407–412.

    CAS  Google Scholar 

  • Bennett, J., 1980, Chloroplast phosphoproteins: Evidence for a thylakoid-bound phosphoprotein phosphatase. Eur. J. Biochem. 104: 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Berry, J., and Björkman, O., 1980, Photosynthetic response and adaptation to temperature in higher plants. Annu.Rev. Plant Physiol. 31: 491–543.

    Article  Google Scholar 

  • Carlberg, I., and Andersson, B., 1996, Phosphatase activities in spinach thylakoid membranes-Effectors, regulation and location. Photosynth.Res. 47: 145–156.

    Article  CAS  Google Scholar 

  • Clausmeyer, S., Klösgen, R.B., and Herrmann, R.G., 1993, Protein import into chloroplasts. The hydrophilic lumenal proteins exhibit unexpected import and sorting specificities in spite of structurally conserved transit peptides. J. Biol Chem. 268: 13869–13876.

    PubMed  CAS  Google Scholar 

  • Cheng, L., Spangfort, M.D., and Allen, J.F., 1994, Substrate specificity and kinetics of thylakoid phosphoprotein phosphatase reactions. Biochim.Biophys. Acta 1188: 151–157.

    Article  CAS  Google Scholar 

  • Cohen, P., 1997, Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem.Sci. 22: 245–251.

    CAS  Google Scholar 

  • Das, A.K., Cohen, P.T.W., and Barford, D., 1998, The structure of the tetratricopeptiderepeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions.EMBOJ.17: 1192–1199.

    Article  CAS  Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H and Katoh S., 1994. Is the primary cause of thermal inactivation of oxygen evolution in spinach PSII membranes release of the extrinsic 33 kDa protein or of Mn? Biochem.Biophys. Acta 1186: 52–58

    Article  CAS  Google Scholar 

  • Eshaghi, S., Andersson, B., and Barber, J., 1999, Isolation of a highly active PSII-LHCII supercomplex from thylakoid membranes by a direct method. FEBS Lett. 446: 23 -26.

    Article  PubMed  CAS  Google Scholar 

  • Feller, U., Crafts-Brandner, S.J., and Salvucci, M.E., 1998, Moderately high temperatures inhibit ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol. 116: 539–546.

    Article  PubMed  CAS  Google Scholar 

  • Fruman, D.A., Burakoff, S.J., and Bierer, B.E., 1994, Immunophilins in protein folding and immunosuppression. FASEB J. 8: 391–400.

    PubMed  CAS  Google Scholar 

  • Fulgosi, H., 1999, Molecular characterization of auxiliary thylakoid components involved in regulation of photosynthesis. PhD thesis, Universität München

    Google Scholar 

  • Fulgosi, H., Vener, A.V., Altschmied, L., Herrmann, R.G., and Andersson B., 1998, A novel multi-functional chloroplast protein: identification of a 40 kDa immunophilin-like protein located in the thylakoid lumen. EMBO J. 17: 1577–1587.

    Article  PubMed  CAS  Google Scholar 

  • Gal, A., Zer., H., and Ohad, I., 1997, Redox-controlled thylakoid protein phosphorylation. News and views. Physiol. Plant. 100: 869–885.

    Article  CAS  Google Scholar 

  • Gal, A., Zer, H. Roobol-Boza, M., Fulgosi, H., Herrmann, R.G., Ohad, I., and Andersson, B., (1995), Use of perfusion chromatography for the rapid isolation of thylakoid kinase enriched preparations. In Photosynthesis; from Light to Biosphere (Mathis, P., ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, vol. III: 341–344.

    Google Scholar 

  • Gounaris, K., Brain, A.R.R., Quinn, P.J., and Williams, W.P., 1984, Structural reorganisation of chloroplast thylakoid membranes in response to heat-stress. Biochim.Biophys. Acta 766: 198–208.

    Article  CAS  Google Scholar 

  • Hammer, M.F., Sarath, G., Osterman, J.C., and Markwell, J., 1995, Assessing modulation of stromal and thylakoid light-harvesting complex-II phosphatase activities with phosphopeptide substrates. Photosynth.Res. 44: 107–115.

    CAS  Google Scholar 

  • Hammer, M.F., Markwell, J., and Sarath, G., 1997, Purification of a protein phosphatase from chloroplast stroma capable of dephosphorylating the light-harvesting complex-II. PlantPhysiol. 113:227–233.

    CAS  Google Scholar 

  • Havaux, M., and Tardy, F., 1996,Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: Possible involvement of xanthophyll-cycle pigments. Planta 198: 324–333.

    Article  CAS  Google Scholar 

  • Havaux, M., Tardy, F., Ravenel, J., Chanu, D., and Parot, P., 1996. Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochimic shift in intact potato leaves: influence of xanthophyll content. Plant Cell Environ. 19: 1359–1368.

    Article  CAS  Google Scholar 

  • Herrmann, R.G., Oelmüller, R., Bichler, J., Schneiderbauer, A., Steppuhn, J., Wedel, N., Tyagi, A.K., and Westhoff, P., 1991, The thylakoid membrane of higher plants: genes, their expression and interaction. In Plant Molecular Biology 2 (R.G. Herrmann and B.A. Larkins, eds.), NATO ASI Series A: Life Sciences, vol. 212, Plenum Publ. Corp., New York, pp.411–427.

    Google Scholar 

  • Herrmann, R.G., 1997, Eukaryotism, towards a new interpretation. In Eukaryotism andSymbiosis (H.E.A. Schenk, R.G. Herrmann, K.W. Jeon, N.E. Müller and W. Schwemmler, eds.), Springer, Heidelberg, New York, 73–118.

    Google Scholar 

  • Keren, N., Berg, A., van Kan, P.J.M., Levanon, H., and Ohad, I., 1997, Mechanism of photosystem II photoinactivation and Dl protein degradation at low light: the role of back electron flow. Proc. Natl. Acad. Sci. USA 94: 1579–1584.

    Article  PubMed  CAS  Google Scholar 

  • Keren, N., and Ohad, I., 1998, State transmission and photoinhibition. In Advances inPhotosynthesis series ,,Molecular biology of Chlamydomonas: chloroplast andmitochondria“ (J.-D. Rochaix, M. Goldscmidt-Clermont and S. Merchant eds.), Kluwer Academic Publishers, vol 7: pp. 569–596.

    Google Scholar 

  • Kieleczawa, J., Coughlan, S.J., and Hind, G., 1992, Isolation and characterization of an alkaline phosphatase from pea thylakoids. Plant Physiol. 99: 1029–1936.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, H.B., and Pueppke, S.G., 1987, Heat shock triggers rapid protein phosphorylation in soybean seedlings. Biochem.Biophys. Res. Commun. 148: 762–767.

    Article  CAS  Google Scholar 

  • Kruse, O., Zheleva, D., and Barber, J., 1997, Stabilization of photosystem II dimers by phosphorylation: implication for the regulation of the turnover of Dl protein. FEBS Lett. 408: 276–280.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Farmer, J.D., Lane, W.S., Friedman, J., Weissman, I., and Schreiber, S.L., 1991, Calcineurin is a common target of cyclophilin-cyclosporin a and FKBP-FK506 complexes. Cell 66: 807–815.

    Article  PubMed  CAS  Google Scholar 

  • Marks A. R., 1996, Cellular functions of immunophilins. Physiol Rev, 76: 631– 649.

    PubMed  CAS  Google Scholar 

  • MacKintosh, C., Coggins, J., and Cohen, P., 1991, Plant protein phosphatases. Subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase. Biochem.J. 273: 733–738.

    CAS  Google Scholar 

  • Prasil, O., Adir, N., and Ohad, I., 1992, Dynamics of photosystem II: Mechanism of photoinhibition and recovery processes. In The Photosystems: Structure, Function andMolecular Biology (J. Barber, ed.), Amsterdam: Elsevier, pp.295–348.

    Google Scholar 

  • Race, L.H., Eaton-Rye, J.J., and Hind, G., 1995, A 64-kDa protein is a substrate for phosphorylation by a distinct thylakoid protein kinase. Photosynth.Res. 43: 231–239

    CAS  Google Scholar 

  • Race, H. L. and Hind G., 1996, A protein kinase in the core of photosystem II. Biochem. 35: 13006–13010

    Article  CAS  Google Scholar 

  • Race, H.L., Herrmann, R.G., and Martin W., 1999, Why have organelles retained genomes? Trends Genet. 15: 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Rintamäki, E., Kettunen, R., and Aro, E.-M., 1996, Differential Dl dephosphorylation in functional and photodameged photosystem II centres. Dephosphorylation is a prerequisite for degradation of damaged Dl. J. Biol. Chem. 271: 14870–14875.

    Article  Google Scholar 

  • Rintamäki, E., Salonen, M., Suoranta, U.M., Carlberg, I., Andersson, B., and Aro, E.-M., 1997, Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation in vivo. Application of phosphothreonine antibodies to analysis of thylakoid phosphoproteins. J. Biol. Chem. 272: 30476–30482.

    Article  PubMed  Google Scholar 

  • Schöffl, F., Prandl, R., and Reindl, A., 1998, Regulation of the heat-shock response. PlantPhysiol 117: 1135–1141.

    Google Scholar 

  • Sikorski, R.S., Bogunski, M.S., Goebl, M., and Hieter, P., 1990, A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60: 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Silverstein, T., Cheng, L., and Allen, J.F., 1993, Redox titration of multiple protein phosphorylations in pea chloroplast thylakoids. Biochim.Biophys. Acta 1183: 215–220.

    Article  CAS  Google Scholar 

  • Snyders, S., and Kohorn, B.D., 1999, TAKs, thylakoid membrane protein kinases associated with energy transduction. J. Biol Chem. 274: 9137–91405.

    Article  PubMed  CAS  Google Scholar 

  • Sokolenko, A., Fulgosi, H., Gal, A., Altschmied, L., Ohad, I., and Herrmann, R.G., 1995, The 64 kDa polypeptide of spinach may not be the LHCII kinase, but a lumen-located polyphenol oxidase. FEBS Lett. 371: 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Sonoike, K., Terashima, I., Iwaki, M., and Itoh, S., 1995, Destruction of photosystem I ironsulfur centres in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Lett. 362: 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G., Bailey, D., Jones, M.W., and Markwell, J, 1989, Chloroplast thylakoid protein phosphatase is a membrane surface-associated activity. Plant Physiol 89: 238–243.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G., and Markwell, J., 1992, Lack of types 1 and 2A protein serine(P)/threonine(P) phosphatase activities in chloroplasts. Plant Physiol 100: 620–624.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G., Sarath, G., and Markwell, J., 1993, Phosphopeptides as substrates for thylakoid protein phosphatase activity. Arch. Biochem. Biophys. 304: 490–495.

    Article  PubMed  CAS  Google Scholar 

  • Sundby, C., Melis, A., Mäenpää, P., and Andersson, B., 1986, Temperature-dependent changes in antenna size of photosystem II. Reversible conversion of photosystem IIα. to photosystem IIβ;. Biochem.Biophys. Acta 851: 475–483.

    Article  CAS  Google Scholar 

  • Tardy, F., and Havaux, M., 1997, Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochem.Biophys. Acta 1330: 179–193.

    Article  CAS  Google Scholar 

  • Vener, A.V., van Kan, P. J., Gal, A., Andersson, B., and Ohad, I., 1995, Activation/deactivation cycle of redox-controlled thylakoid protein phosphorylation. Role of plastoquinol bound to the reduced cytochrome bf complex. J. Biol Chem. 270: 25225–25232.

    Article  PubMed  CAS  Google Scholar 

  • Vener, A.V., van Kan, P.J.M., Ohad, I., and Andersson, B., 1997, Plastochinol at the Qo-site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: Thylakoid protein kinase deactivation by a single turnover flash. Proc.Natl. Acad. Sci. USA 94: 1585–1590.

    Article  PubMed  CAS  Google Scholar 

  • Vener, A., Ohad, I., and Andersson, B., 1998, Protein phosphorylation and redox sensing in chloroplast thylakoids. Curr.Opin. Plant Biol. 1: 217–223.

    Article  CAS  Google Scholar 

  • Vener, A.V., Rokka, A., Fulgosi, H., Andersson, B., and Herrmann R.G., 1999, A cyclophilin-regulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts. Biochemistry 38, 14955 — 14965.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C.T., Zydowski, L.D., and McKeon, F.D., 1992, Cyclosporin A, the cyclophylin class of peptidyl prolyl isomerases, and blockade of T cell signal transduction. J. Biol. Chem. 267: 13115–13118.

    PubMed  CAS  Google Scholar 

  • Weber, P., Fulgosi, H., Sokolenko, A., Karnauchov, I., Andersson, B., Ohad, I., and Herrmann, R.G., 1998, Evidence for four thylakoid-located protein kinases. In: Photosynthesis: Mechanisms and Effects (G. Garab, ed.), Kluwer Academic Publ., Dordrecht, The Netherlands, pp. 1883–1886.

    Google Scholar 

  • Weis, E., and Berry, J.A., 1988, Plants and high temperature stress. Symp.Soc. Exp. Biol 42: 329–346.

    CAS  Google Scholar 

  • Zer, H., Vink, M., Keren, N., Dilly-Hartwig, H.G., Paulsen, H., Herrmann, R.G., Andersson, B., and Ohad, I., 1999, Regulation of thylakoid protein phosphorylation at the substrate level: Reversible light-induced conformational changes expose the phosphorylation site of the light-harvesting complex II. Proc. Natl. Acad. Sci. USA 96: 8277–8282.

    Article  PubMed  CAS  Google Scholar 

  • Zito, F., Finazzi, G., Delosme, R., Nitschke, W., Picot, D., and Wollman, F.-A., 1999, The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J. 18: 2961–2969.

    Article  PubMed  CAS  Google Scholar 

  • Zolnierowicz, S., Bollen, M., 2000, Protein phosphorylation and protein phosphatases. De Panne, Belgium, September 19–24, 1999. EMBO J. 19: 483–488.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weber, P. et al. (2001). Elements of Signal Transduction Involved in Thylakoid Membrane Dynamics. In: Sopory, S.K., Oelmüller, R., Maheshwari, S.C. (eds) Signal Transduction in Plants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1365-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1365-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5518-2

  • Online ISBN: 978-1-4615-1365-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics