Skip to main content

Functions and Actions of Arabidopsis Phytochromes

  • Chapter
Book cover Signal Transduction in Plants

Abstract

Environmental cues play a crucial role in regulating plant growth and development. Given the sedentary nature of plants, this close coupling between environment and development is essential for survival under conditions that are ever changing. The light environment is a particularly important determinant of plant development and the periodicity, direction, quantity and quality of incident light are continuously monitored by plants. Regulatory light signals are perceived by a number of specialised photoreceptor systems, each of which displays maximal light absorption in a specific region of the light spectrum. The photoreversible phytochromes absorb predominantly in the red (R) and far-red (FR) region of the spectrum, the cryptochromes and phototropin absorb light in the blue/UV-A region of the spectrum, and other, as yet unknown, photoreceptors are involved in perception of UV-A and UV-B light. The phytochromes are perhaps the best characterised of these photoreceptor systems. In the higher plants, phytochromes comprise a number of closely related photoreceptor proteins, the apoproteins of which are encoded by a small family of genes. In Arabidopsis thaliana there are five apophytochrome-encoding genes, PHYA, PHYB, PHYC, PHYD and PHYE (Sharrock and Quail 1989, Clack et al 1994). In the last few years genetic approaches, mainly focussed on Arabidopsis, have had a major impact in increasing our understanding of the functions of individual members of the phytochrome family and in identifying components of the signal transduction networks that couple light reception to alteration in gene expression and changes in growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aukerman, M.J., Hirschfeld, M., Wester, L., Weaver, M., Clack, T., Amasino, R.M., and Sharrock, R.A., 1997, A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9: 1317–1326.

    PubMed  CAS  Google Scholar 

  • Barnes, S.A., Quaggio, R.B., Whitelam, G.C., and Chua, N-H., 1996, fhyI defines a branchpoint in phytochrome A signal transduction pathways for gene expression. Plant J. 10: 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Botto, J.F., Sánchez, R.A., Whitelam, G.C., and Casal, J.J., 1996, Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade-light in Arabidopsis. Plant Physiol. 110: 439–444.

    PubMed  CAS  Google Scholar 

  • Chamovitz, D.A., and Deng, X-W., 1996, Light signalling in plants. Crit. Rev. Plant Sci. 15: 455–478.

    CAS  Google Scholar 

  • Clack, T., Mathews, S., and Sharrock, R.A., 1994, The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequences and expression of PHYD and PHYE.Plant Mol. Biol. 25: 413–427.

    Article  PubMed  CAS  Google Scholar 

  • Devlin, P.F., Halliday, K.J., Harberd, N.P., and Whitelam, G.C., 1996, The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Plant J. 10: 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  • Devlin, P.F., Patel, S., and Whitelam, G. C., 1998, Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10: 1479–1488.

    PubMed  CAS  Google Scholar 

  • Devlin, P.F., Robson, P.R.H., Patel, S., Goosey, L., Sharrock, R.A., and Whitelam, G.C., 1999, Phytochrome D acts in the shade avoidance syndrome in Arabidopsis thaliana controlling elongation growth and flowering time. Plant Physiol. 119: 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Halliday, K.J., Hudson, M., Ni, M., Qin, M.M., and Quail, P.H., 1999, pocl: An Arabidopsis mutant perturbed in phytochrome signaling because of a T-DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proc. Natl. Acad. Sci.USA 96: 5832–5837.

    Article  PubMed  CAS  Google Scholar 

  • Halliday, K.J., Koornneef, M., and Whitelam, G.C., 1994, Phytochrome B, and at least one other phytochrome, mediate the accelerated flowering response of Arabidopsis thaliana L. to low red:far-red ratio. Plant Physiol. 104: 1311–1315.

    PubMed  CAS  Google Scholar 

  • Johnson, E., Bradley, J.M., Harberd, N.H., and Whitelam, G.C., 1994, Photoresponses of light-grown phyA mutants of Arabidopsis: phytochrome A is required for the perception of daylength extensions. Plant Physiol. 105: 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Kircher, S., Kozma-Bognar, L., Kim, L., Adam, E., Harter, K., Schäfer, E., and Nagy, F., 1999, Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11: 1445–1456.

    PubMed  CAS  Google Scholar 

  • Koornneef, M., Rolf, E., and Spruit, C.J.P., 1980, Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol. 100: 147–160.

    Google Scholar 

  • Ni, M., Tepperman, J.M., and Quail, P.H., 1998, PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95: 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Poppe, C., Hangarter, R.P., Sharrock, R.A., Nagy, F., and Schäfer, E., 1996, The light-induced reduction of the gravitropic growth-orientation of seedlings of Arabidopsis thaliana (L) Heynh is a photomorphogenic response mediated synergistically by the far-red-absorbing forms of phytochromes A and B. Planta 199: 511–514.

    Article  PubMed  CAS  Google Scholar 

  • Poppe, C., and Schäfer, E., 1997, Seed germination of Arabidopsis thaliana phyA/phyB double mutants is under phytochrome control. Plant Physiol. 114: 1487–1492.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M., and Chory, J., 1994 Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104: 1139–1149.

    PubMed  CAS  Google Scholar 

  • Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M., and Chory, J., 1993, Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5: 147–157.

    PubMed  CAS  Google Scholar 

  • Shinomura, T., Nagatani, A., Chory, J., and Furuya, M., 1994, The induction of seedgermination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol. 104: 363–371.

    PubMed  CAS  Google Scholar 

  • Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M., and Furuya, M., 1996, Action spectra for phytochrome A-specific and B-specific photoinduction of seedgermination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93: 8129–8133.

    Article  PubMed  CAS  Google Scholar 

  • Somers, D.E., Devlin, P.F., and. Kay, S.A., 1998, Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282: 1488–1490.

    Article  PubMed  CAS  Google Scholar 

  • von Arnim, A., and Deng, X-W., 1996, A role for transcriptional repression during light control of plant development. BioEssays 18: 905–910.

    Article  Google Scholar 

  • Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J., and Harberd, N.P., 1993, Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5: 757–768.

    PubMed  CAS  Google Scholar 

  • Whitelam, G.C., Patel, S., and Devlin, P.F., 1998, Phytochromes and photomorphogenesis in Arabidopsis. Phil. Trans. Roy. Soc. Lond. B 353: 1445–1453.

    Article  CAS  Google Scholar 

  • Whitelam, G.C., and Devlin, P.F., 1998, Light signalling in Arabidopsis. Plant Physiol. Biochem. 36: 125–133.

    Article  CAS  Google Scholar 

  • Yanovsky, M.J., Casal, J.J., and Whitelam, G.C., 1995, Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak de-etiolation of the phyA mutant under dense canopies. Plant Cell Environ. 18: 788–794.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Halliday, K.J., Praekelt, U.M., Salter, M.G., Whitelam, G.C. (2001). Functions and Actions of Arabidopsis Phytochromes. In: Sopory, S.K., Oelmüller, R., Maheshwari, S.C. (eds) Signal Transduction in Plants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1365-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1365-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5518-2

  • Online ISBN: 978-1-4615-1365-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics