Advertisement

Notion Formation in Machine Learning

  • Lorenza Saitta
  • Roberto Esposito

Abstract

In Artificial Intelligence, and, specifically in Machine Learning, to form a new notion usually means to build up a “concept” or a “category”. The simplest way to consider a category is extensional: a category is a set of “equivalent” objects,1 i.e., objects that share properties.2 Categories are organized into taxonomies, linked through the set inclusion relation.1 A concept is sometime considered as the intensional representation of a category, i.e., a description of the objects in the category,2 called also the instances of the concept. Actually, most frequently, the denotations “concept” and “category” are used as synonyms.

Keywords

Machine Learn Knowledge Representation Kolmogorov Complexity Conceptual Cluster Abstraction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Rosch, Principles of categorization, in E. Rosch & B. Lloyd eds., Cognition and Categorization, Erlbaum, Hillsdale, NJ (1978).Google Scholar
  2. 2.
    L.G. Murphy and D.L. Medin, The role of theories in conceptual coherence, Psychological Review, 92, pp. 289-316 (1985).CrossRefGoogle Scholar
  3. 3.
    J.P. Desclés, Implication entre concepts: la notion de typicalité, in M. Riegel & I. Tamba eds., L’implication dans les langues naturelles et dans les langages artificiels, Klincksieck, Paris, France, pp. 179-202 (1987).Google Scholar
  4. 4.
    G. Frege, Grundgesetze der Aritmetik, Begriffsschriftlich Abgeleitet, Vol. I. Jena, Germany (1893).Google Scholar
  5. 5.
    L. Wittgenstein, Philosophical Investigations, Blackwell, Oxford, UK (1953).Google Scholar
  6. 6.
    E. Rosch and C.B. Mervis, Family resemblance studies in the internal structure of categories, Cognitive Psychology, 7, pp. 573-605 (1975).CrossRefGoogle Scholar
  7. 7.
    L. Barsalou, Cognitive Psychology, Erlbaum, Hillsdale, NJ (1992).Google Scholar
  8. 8.
    R. Michalski, A Theory and methodology of inductive learning. In R. Michalski, T. Mitchell & J. Carbonell eds., Machine Learning, Vol. I, Tioga Publ. Co., Palo Alto, CA, pp. 83-134 (1983).Google Scholar
  9. 9.
    T. Mitchell, Generalization as search, Artificial Intelligence,18, pp. 203-226 (1982).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Aamodt, Knowledge-intensive Case-based Reasoning and Sustained Learning, in Proc. of the ECAI Conference, Stockholm, Sweden, pp. 1-6 (1990).Google Scholar
  11. 11.
    J. Kolodner, Judging which is the best case for a Case-Based reasoner, in Proc. of the Case-Based Reasoning Workshop, Pensacola, FL, pp. 77-81 (1989).Google Scholar
  12. 12.
    R. C. Schank and D.B. Leake, Creativity and learning in a Case-Based explainer, Artificial Intelligence, 40, pp. 353-385 (1989).CrossRefGoogle Scholar
  13. 13.
    C. Smith, J. Snir, and L. Grosslight, Using conceptual models to facilitate conceptual change: the case of weight-density differentiation, Cognition and Instruction, 9, pp. 221-283 (1992).CrossRefGoogle Scholar
  14. 14.
    A. Tversky and I. Gati, Studies of similarity, in E. Rosch & B. Lloyd eds., Cognition and Categorization, Erlbaum, Hillsdale, NJ (1978).Google Scholar
  15. 15.
    D. L. Medin, W. D. Wattenmaker, and S. Hamson, Family resemblance, conceptual cohesiveness and category construction, Cognitive Psychology, 19, pp. 242-279 (1987).CrossRefGoogle Scholar
  16. 16.
    L.J. Rips, Similarity, typicality, and categorization, in S. Vosniadou & A. Ortony eds., Similarity and Analogical Reasoning, Cambridge University Press, New York, NY, pp. 23-59 (1989).Google Scholar
  17. 17.
    D.L. Medin, R.L. Goldstone, and D. Gentner, Respects for similarity, Psychological Review, 100, pp. 254- 238 (1993).CrossRefGoogle Scholar
  18. 18.
    J. Hoffman and M. Ziessler, The integration of visual and functional classifications in concept formation, Psychological Research, 48, pp. 69-78 (1986).CrossRefGoogle Scholar
  19. 19.
    L.W. Barsalou, Deriving categories to achieve goals, in G.H. Bower ed.. The Psychology of Learning and Motivation: Advances in Research and Theory, Academic Press, New York, NY, pp. 1-64 (1991).Google Scholar
  20. 20.
    R. S. Michalski and R. Stepp, Learning from observation: conceptual clustering, in R. S. Michalski, J. G. Carbonell & T. Mitchell eds., Machine Learning: An Artificial Intelligence Approach, Vol. I, Tioga Publishing Co., Palo Alto, CA, pp. 331-363 (1983).Google Scholar
  21. 21.
    R. Stepp and R.S. Michalski, Conceptual clustering, inventing goal-oriented classifications of structured objects, in Michalski R., Carbonell J. & Mitchell T. eds., Machine Learning: An AI Approach, Vol. II, Morgan Kaufmann, Los Altos, CA, pp. 471-498.Google Scholar
  22. 22.
    M. Lebowitz, Experiments with incremental concept formation: UNIMEM, Machine Learning, 2, pp. 103- 138 (1987).Google Scholar
  23. 23.
    P. Langley and J. M. Zytkow, Data-driven approaches to empirical discovery, Artificial Intelligence, 40, pp. 283-312 (1989).CrossRefGoogle Scholar
  24. 24.
    D. H. Fisher, Knowldge Acquisition via Incremental Conceptual Clustering, Machine Learning, 2, pp. 139-172 (1987).Google Scholar
  25. 25.
    J-U. Kietz and K. Morik, A polynomial approach to the constructive induction of structural knowledge, Machine Learning, 14, pp. 193-218 (1994).MATHCrossRefGoogle Scholar
  26. 26.
    R. Goldstone and L. Barsalou Reuniting perception and conception, Cognition, 65, pp. 231-262 (1998).CrossRefGoogle Scholar
  27. 27.
    M. Li, and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, New York, NY (1997).MATHGoogle Scholar
  28. 28.
    K. Brassel, and R. Weibel, A review and conceptual framework of automated map generalization, Int. J. of Geographical Information Systems, 2, pp. 229-244 (1988).CrossRefGoogle Scholar
  29. 29.
    M.P. Armstrong, Knowledge classification and organisation in map generalization: Making rules for knowledge representation, in McMaster & Buttendfield ed., Longman Scientific & Technical, pp. 86- 102.Google Scholar
  30. 30.
    J-F. Hangouët, Approaches et Méthodes pour l’Automatisation de la Généralisation Cartographique; Application en Bord de Ville, Ph.D. Thesis, Univ. of Marne-la-Vallée, France (1998).Google Scholar
  31. 31.
    S. Mustière, GALBE: Adaptive Generalisation. The need for an adaptive process for automated generalisation, an example on roads, in Proc. GIS’Planet-1, Lisbon, Portugal (1998).Google Scholar
  32. 32.
    R. Weibel, S. Keller, and T. Reichenbacher, Overcoming the knowledge acquisition bottleneck in map generalization: the role of interactive systems and computional intelligence, in Proceedings of COSIT’95, pp. 139-156 (1995).Google Scholar
  33. 33.
    S. Mustière, J-D. Zucker, and L. Saitta, An abstraction-based machine learning approach to cartographic generalization, in Proc. Int Conf. on Spatial Data Handling, Bejing, China, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Lorenza Saitta
    • 1
  • Roberto Esposito
    • 2
  1. 1.Dipartimento di Scienze e Tecnologie AvanzateUniversità del Piemonte Orientale “Amedeo Avogadro”AlessandriaItaly
  2. 2.Dipartimento di InformaticaUniversità di TorinoTorinoItaly

Personalised recommendations