Advertisement

Clinical Spectrum in Autosomal Dominant Stargardt’s Macular Dystrophy with a Mutation in ELOVL4 Gene

  • Yang Li
  • Linda A. Lam
  • Zhengya Yu
  • Zhenglin Yang
  • Paul Bither
  • Kang Zhang

Abstract

In 1909, Stargardt reported a recessively inherited progressive atrophic macular dystrophy associated with perifoveal flecks1. This condition, now termed Stargardt’s macular dystrophy, presents insidiously within the first two decades of life with a gradual loss of central vision1,2,3,4,5. In the early course of the disease, fundus abnormalities on ophthalmoscopy may be minimal despite a marked reduction in visual acuity. Visual acuities often deteriorate to range between 20/200 to 20/4006. It is the most common form of hereditary macular dystrophy, and accounts for 7% of all retinal dystrophies7. The estimated incidence of Stargardt’s macular dystrophy is 1 in 10,0007,8. Classic ophthlamoloscopic findings associated with Stargardt’s macular dystrophy are bilateral atrophic macular lesions and yellow-white flecks at the level of the retinal pigment epithelium at the posterior pole8. Since that time, numerous reports have elaborated upon the genetics and clinical variations of Stargardt’s macular dystrophy. Franceschetti later coined the term “fundus flavimaculatus” to describe a fundus morphology characterized by the presence of white-yellow retinal flecks, which were scattered throughout the posterior pole and may extend out to the midperiphery9. In fundus flavimaculatus, midperipheral flecks are more prominent than the central macular flecks. Both Stargardt’s macular dystrophy and fundus flavimaculatus have been found to exhibit much clinical variation in phenotypic expression and rates of progression. Despite attempts to delineate a clear distinction between the two conditions, the clinical similarities, the occurrence of both within single pedigrees, and the results of linkage analysis all support the belief that Stargardt’s macular dystrophy and fundus flavimaculatus both result from allelic mutations in the same gene2,3,4.

Keywords

Visual Acuity Posterior Pole Geographic Atrophy Fluorescein Angiogram Macular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Stargardt, Uber familiare, progressive degeneration in der maculagegend des auges, raefes rch.Ophthalmol 71, 534–550 (1909).CrossRefGoogle Scholar
  2. 2.
    O.B. Hadden and J.D.M. Gass, Fundus flavimaculatus and Stargardt’s disease, Am. J. Ophthal. 82, 527–539(1976).PubMedGoogle Scholar
  3. 3.
    A. E. Krill and A. F. Deutman, The various categories of juvenile maculadegeneration, Trans. Am.Ophthalmol. Soc. 70, 220–245 (1972).Google Scholar
  4. 4.
    K. G. Noble and R. E. Carr, Stargardt’s disease and fundus flavimaculatus, Arch. Ophthalmol. 97, 1281–1285(1979).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Zhang, T. H. Nguyen, A. Crandall, et al., Genetic and molecular studies of macular dystrophies: recent developments, Surv Ophthalmol. 40, 51–61 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Zhang, H. Yeon, M. Han, et al, Molecular genetics of macular dystrophies, Br. J. Ophthal. 80, 1018–1022 (1996).CrossRefGoogle Scholar
  7. 7.
    J. Kaplan, S. Gerber, D. Larget-Piet, et al, A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1, Nat. Genet. 5, 308–311 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    K.L. Anderson, L. Baird, R.A. Lewis, et al, A YAC contig encompassing the recessive Stargardt disease gene (STGD) on chromosome 1p, Am. J. Hum. Genet. 57, 1351–63 (1995).PubMedGoogle Scholar
  9. 9.
    T. M. Aaberg, Stargardt’s disease and fundus flavimaulatus: Evaluation of morphologic progression and intrafamilial co-existence, Tr. Am Ophth Soc. 84,453–87 (1986).PubMedGoogle Scholar
  10. 10.
    A. Franceschetti, Fundus flavimaculatus, Arch Ophthalmol. 25, 505–550 (1965).Google Scholar
  11. 11.
    D. C. Garibaldi and K. Zhang, Molecular genetics of macular degenerations, Int. Ophthal. Clinics 39, 117–142(1999).CrossRefGoogle Scholar
  12. 12.
    J. D. M. Gass, Stereoscopic atlas of macular diseases: diagnosis and treatment. 4th ed. (Mosby, St. Louis,1997), p. 326–333.Google Scholar
  13. 13.
    G. Fish, R. Grey, K. S. Sehmi, et al., The dark choroid in posterior retinal dystrophy, Br. J. Ophthal. 65, 359–363 (1981).CrossRefGoogle Scholar
  14. 14.
    A. E. Ullis, A. T. Moore, A. C. Bird, The dark choroids in posterior retinal dystrophies. Ophthalmology 97, 1423–1427 (1987).Google Scholar
  15. 15.
    S. Gerber, J. M. Rozet, and T. J. R. van de Pol, A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome lpl3, Am J. Hum. Gen. 56, 396–399 (1995).Google Scholar
  16. 16.
    R. Allikmets, N.F. Shroyer, N. Singh, et al, A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy, Nat. Genet. 15, 236–246 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Sun and J. Nathans, Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat. Genet. 17, 15–16 (1997).PubMedCrossRefGoogle Scholar
  18. 18.
    S. M. Azarian and G. H. Travis, The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt’s disease, Hum. Genet. 102, 699–705 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    F. P. M. Cremers, D. J. R. van de Pol, M. van Driel, et al, Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum. Mol. Genet. 7, 355–362 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Martinez-Mir, E. Paloma, R. Allikmets, et al, Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR, Nat Genet. 18, 11–12 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Allikmets, N. F. Shroyer, N. Singh, et al, Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration, Science 277, 1805–1807 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    Allikmets, R et al. Further evidence for an association of the ABCR alleles with age-related macular degeneration. Am J Human Genetics, 67,487–491 (2000).CrossRefGoogle Scholar
  23. 23.
    N.F. Shroyer, R. A. Lewis, R. Allikmets et al, The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactoral, Vis. Research 39, 2537–2544 (1999).CrossRefGoogle Scholar
  24. 24.
    G. W. Cibis, M. Morey, and D. J. Harris. Dominantly inherited macular dystrophy with flecks (Stargardt), Arch Ophthalmol 98, 1785–1789 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    E. M. Stone, B. E. Nichols, A. E. Kimura, et al, Clinical features of a Stargardt-like dominant progressive macular dystrophy with genetic linkage to chromosome 6q, Arch Ophthalmol. 112, 765–772 (1994).PubMedCrossRefGoogle Scholar
  26. 26.
    A. O. Edwards, A. Miedziak, T. Vrabec, et al, Autosomal dominant Stargardt-like macular dystrophy: I. Clinical characterization, longitudinal follow-up, and evidence for a common ancestry in families linked to chromosome 6ql4, Am J. Ophthalmol. 127, 426–435 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    P.Bither, L.Berns, Eominant inheritance of Stargardt’s disease, Journal of the American Optometric Association 59,112–117 (1988).PubMedGoogle Scholar
  28. 28.
    M. Kniazeva, M. F. Chiang, B. Morgan, et al. A new locus for autosomal dominant Stargardt-like disease maps to chromosome 4, Am J. Hum. Genet. 64, 1394–1399 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    I. B. Griesinger, P. A. Sieving, and R. Ayyagari, Autosomal dominant macular atrophy at 6ql4 excludes CORD7 and MCDR1/PBCRA loci, Invest. Ophthal and Vis. Science 41, 248–255 (2000).Google Scholar
  30. 30.
    K. Zhang, M. Kniazeva, M. Han, et al, A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy, Nat. Genet. 27, 89–93 (2001).PubMedGoogle Scholar
  31. 31.
    J. D. Armstrong, D. Meyer, S. Xu, et al, Long-term follow-up of Stargardt’s disease and fundus flavimaculatus, Ophthalmology 105, 448–457 (1998).PubMedCrossRefGoogle Scholar
  32. 32.
    N. Lois, G. E. Holder, F. W. Fitzke, et al, Intrafamilial variation of phenotype in Stargardt macular dystrophy- fundus flavimaculatus, Invest Ophthal Vis Sci 40, 2668–2275 (1999).PubMedGoogle Scholar
  33. 33.
    D. C. Garibaldi, Z. Yang, Y. Li, et al., The role of fatty acids in the pathogenesis of retinal degeneration, In press: X International symposium on retinal degeneration (2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Yang Li
    • 1
  • Linda A. Lam
    • 1
  • Zhengya Yu
    • 1
  • Zhenglin Yang
    • 1
  • Paul Bither
    • 2
  • Kang Zhang
    • 1
  1. 1.Cole Eye Institutethe Cleveland Clinic FoundationClevelandUSA
  2. 2.Midwest Eye InstituteIndianapolisUSA

Personalised recommendations