Skip to main content

Abstract

‘Gene expression’ involves RNA synthesis (transcription) and then protein synthesis (translation) of a specific nucleotide sequence to yield the biologically active products. Number and types of RNAs and proteins in different tissues have been found to be different even though each cell of the organism has identical copies of DNA suggesting thereby that these differences are due to differential expression of genes in these cells. The manner in which a cell responds to the environment is determined by its precise combination of expressed and unexpressed genes. The first step to understand the mechanism of gene regulation and cellular functions is identification of the expressed genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paranjape, S.M., Kamakaka, R.T., Kadonaga, J.T., 1994, Role of chromatin structure in the regulation of transcription by RNA polymerase II. Ann. Rev. Biochem. 63: 265-297

    Article  PubMed  CAS  Google Scholar 

  2. Workman, J.L. and Kingston, R.E., 1998, Alteration of nucleosome structure as a mechanism of transcriptional regulation. Ann. Rev. Biochem. 67: 545-579

    Article  PubMed  CAS  Google Scholar 

  3. Ramakrishnan, V., 1997, Histone H1 and chromatin higher-order structure. Crit. Rev. Eukaryotic Gene Expr. 7: 215-230

    Article  CAS  Google Scholar 

  4. Grunstein, M., 1998, Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93: 325-328

    Article  PubMed  CAS  Google Scholar 

  5. Struhl, K., 1998, Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12: 599-606

    Article  PubMed  CAS  Google Scholar 

  6. Nig, H.H. and Bird, A., 1999, DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9: 158-163

    Article  Google Scholar 

  7. Darnell, J.E.J., 1997, STATs and gene regulation. Science 277: 1630-1635

    Article  PubMed  CAS  Google Scholar 

  8. Ghosh, S. et al., 1998, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Ann. Rev. Immunol. 16: 225-260

    Article  CAS  Google Scholar 

  9. Mangestsdorf, D.J. et al., 1995, The nuclear receptor superfamily: the second decade. Cell 83: 835-839

    Article  Google Scholar 

  10. Harrison, S.C., 1991, A structural taxonomy of DNA-binding domains. Nature 353: 715-719 1.

    Article  PubMed  CAS  Google Scholar 

  11. Armstrong, J.A. and Emerson, B.M., 1998, Transcription of chromatin: these are complex times. Current Opinion Genet. & Dev. 8: 165-172

    Article  CAS  Google Scholar 

  12. Kornberg, R.D. and Lorch, Y., 1999, Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98: 285-294

    Article  PubMed  CAS  Google Scholar 

  13. Bird, A. and Kouzarides, T., 2000, Chromosomes and expression mechanisms. Current Opinion Genet. & Dev. 10: 141-143

    Article  CAS  Google Scholar 

  14. Kornberg, R.D., 2000, Eukaryotic transcriptional control. Trends in Genetics 15: M46-49 (Millennium issue)

    Google Scholar 

  15. Roeder, R.G. and Rutter, W.J., 1969, Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224: 234-237

    Article  PubMed  CAS  Google Scholar 

  16. Kedinger, C. et al., 1970, Alpha-amanitin: a specific inhibitor of one of two DNA-dependent RNA polymerase activities from calf thymus. Biochem. Biophys. Res. Commun. 38:165-171

    Article  CAS  Google Scholar 

  17. Sklar, V.E.F., et al., 1975, Distinct molecular structures of nuclear class I, II and III DNA dependent RNA polymerase. Proc. Natl. Acad. Sci., U.S.A. , 348-352.

    Google Scholar 

  18. Flanagan, P.M. et al., 1991, A mediator for activation of RNA polymerase II transcription in vitro. Nature 350: 436-438

    Article  PubMed  CAS  Google Scholar 

  19. Asturias, F.J. and Kornberg, R.D., 1999, Protein crystallization on lipid layers and structure determination of the RNA polymerase II transcription initiation complex. J. Biol. Chem. 274:6813-6817

    Article  PubMed  CAS  Google Scholar 

  20. Poglitsch, C.L., Meredith, G., Gnatt, A., Jensen, G.J., Chang, W-H., Fu, J. and Kornberg, R.D., 1999, Electron crystal structure of an RNA polymerase II transcription elongation complex. Cell 98: 791-798

    Article  PubMed  CAS  Google Scholar 

  21. Cramer, P., Bushnell, D.A., Fu, J., Gnatt, A.L., Mater-Davis, B., Thompson, N.E., Burgess, R.R., Edwards, A.E., David, P.R. and Kornberg, R.D., 2000, Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288: 640-649

    Article  PubMed  CAS  Google Scholar 

  22. Conaway, R. and Conaway, J., 1997, General transcription factors for RNA polymerase II. Prog. Nucleic Acids Res. Mol. Biol. 56: 327-346

    CAS  Google Scholar 

  23. Feaver, W.J. et al., 1996, Genes for Tfb2, Tfb3, and Tfb4 subunits of yeast transcription/repair factor IIH: Homology to human cyclin-dependent kinase activating kinase and IIH subunits. J. Biol. Chem. 272: 19319-19327

    Article  Google Scholar 

  24. Gabrielsen, O.S. and Sentenac, A., 1991, RNA polymerase III(c) and its transcription factors. Trends Biochem. Sci. 16: 412-416

    Article  PubMed  CAS  Google Scholar 

  25. Atchison, M.L., 1988, Enhancers: mechanisms of action and cell specificity. Ann. Rev. Cell Biol. 4: 127-153

    Article  PubMed  CAS  Google Scholar 

  26. Thummel, C.S., Burtis, K.C. and Hogness, D.S., 1990, Spatial and temporal patterns of E74 transcription during Drosophila development. Cell 60: 101-111

    Article  Google Scholar 

  27. Tennyson, C.N., Klamut, H.J., Worton, R.G., 1995, The human dystrophin gene requires 16 hour to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9: 184-190

    Article  PubMed  CAS  Google Scholar 

  28. Izban, M.G., Luse, D.S., 1992, Factors stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267: 13647-13655

    PubMed  CAS  Google Scholar 

  29. Conaway, R. and Conaway, J., 1999, Mechanism and regulation of transcriptional elongation by RNA polymerase II. Current Opinion Cell Biol. 11: 342-346

    Google Scholar 

  30. Struhl, K., 1989, Molecular mechanisms of transcriptional regulation in yeast. Ann. Rev. Biochem. 58: 1051-71

    Article  PubMed  CAS  Google Scholar 

  31. Mitchell, P.J. and Tjian, R., 1989, Transcriptional regulation in mammalian cell by sequence specific DNA binding proteins. Science 245: 371-78

    Article  PubMed  CAS  Google Scholar 

  32. McKinney, J.D. and Heintz, N., 1991, Transcriptional regulation in eukaryotic cell cycle. Trends Biochem. Sci. 16: 430-434

    Article  PubMed  CAS  Google Scholar 

  33. Roeder, R.G., 1991, Complexities of eukaryotic transcription initiation: Regulation of preinitiation complex assembly. Trends Biochem. Sci. 16: 402-407

    Article  PubMed  CAS  Google Scholar 

  34. Abelson, J., 1979, RNA processing and the intervening sequence problem. Ann. Rev. Biochem. 48: 1035

    Article  PubMed  CAS  Google Scholar 

  35. *Bentley, 1999, Current Opinion Cell Biol. 11: 347-351

    Article  PubMed  CAS  Google Scholar 

  36. Brietbart, R.E., Andreadis, A. and Nadal-Ginard, B., 1987, Alternative splicing: A ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Ann. Rev. Biochem. 56: 467-495

    Article  Google Scholar 

  37. Bingham, P.M., Chou, T., Mims, I. And Zachari, Z., 1988, On/off regulation of gene expression at the level of splicing. Trends Genet. 4: 134

    Article  PubMed  CAS  Google Scholar 

  38. *Minviella-Sebastia, 1999, Current Opinion Cell Biol. 11: 352-357

    Article  Google Scholar 

  39. Hinnebusch, A.G., 1990, Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. Trends Biochem. Sci. 15: 148-152

    Article  PubMed  CAS  Google Scholar 

  40. Eberwine, J. et al., 1992, Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. U.S.A. 89: 3010-3014

    Article  PubMed  CAS  Google Scholar 

  41. Dixon, A.K. et al.,t 1998, Expression profiling of simple cell using 3 prime end amplification (TPEA) PCR. Nucleic Acids Res. 26: 4426-4431

    Article  PubMed  CAS  Google Scholar 

  42. Dixon A.K., Richardson, P.J., Pinnock, R.D. and Lee, K., 2000, Gene expression analysis at the single cell-level. TIPS 21: 65-70 .

    PubMed  CAS  Google Scholar 

  43. Dreyfuss, G. and Struhl, K., 1999, Nucleus and gene expression: Multiprotein complexes, mechanistic connections and nuclear organization. Current Opinion Cell Biol. 11: 303-306

    Article  CAS  Google Scholar 

  44. Marshall, D.J. and Leiden, J.M., 1998, Recent advances in skeletal-muscle based gene therapy. Current Opinion Genet. & Dev. 8: 360-365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaur, J., Mukesh, M., Anand, A. (2002). Gene Expression. In: Subramanian, G. (eds) Manufacturing of Gene Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1353-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1353-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5512-0

  • Online ISBN: 978-1-4615-1353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics