The Classical and the Quantum Face of Above-Threshold Ionization

  • G. G. Paulus
  • H. Walther

Abstract

Above-threshold ionization (ATI) was discovered in 1979 by Agostini et al. [1]. Its discovery marks the beginning of the investigation of extreme highly non-linear phenomena in high-frequency fields, i.e. in the visible spectral region. ATI is photoionization in intense laser fields such that an atom absorbs more photons than necessary for subduing the ionization potential. This can be seen by inspection of the photoelectron kinetic energy spectra which consist of a series of peaks separated by the photon energy. Generally, the peak heights decrease as the order is increased. In this respect, the appearance of ATI spectra is similar to that for the generation of high harmonics in gaseous media (high-harmonic generation, HHG) for comparable laser intensities [2]. For that effect, in 1988, it was discovered that the initial decrease of harmonic yield with increasing harmonic order is followed by a flat annex, i.e. the harmonic intensity is more or less independent of its order [3]. This plateau-like feature ends with a steep cut-off. Years later, an analogous phenomenon was measured for ATI [4, 5].

Keywords

Microwave Argon Sapphire Xenon Delone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N. Rahman, Phys. Rev. Lett. 42, 1127 (1979).CrossRefGoogle Scholar
  2. [2]
    J. Wildenauer, J. Appl. Phys. 62, 41 (1987)CrossRefGoogle Scholar
  3. [3]
    M. Ferray, A. l’Huillier, X. F. Li, L. A. Lompré, G. Mainfray, C. Manus, J. Phys. B 21, L3l (1988).CrossRefGoogle Scholar
  4. [4]
    G. G. Paulus, W. Nicklich, Xu Huale, P. Lambropoulos, H. Walther, Phys. Rev. Lett. 72, 2851 (1994).CrossRefGoogle Scholar
  5. [5]
    B. Walker, B. Sheehy, K. C. Kulander, L. F. DiMauro, Phys. Rev. Lett. 77, 5031 (1996).CrossRefGoogle Scholar
  6. [6]
    Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, Science 278, 661 (1997).CrossRefGoogle Scholar
  7. [7]
    Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, H. C. Kapteyn, Phys. Rev. Lett. 79, 2967 (1997).CrossRefGoogle Scholar
  8. [8]
    D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, Science 288, 635 (2000).CrossRefGoogle Scholar
  9. [9]
    C. J. Joachain, M. Dörr, N. Kylstra, Adv. At. Mol. Opt. Phys. 42, 225 (2000).CrossRefGoogle Scholar
  10. [10]
    H. B. v. Linden v.d. Heuvell and H. G. Muller, in Multiphoton Processes, Studies in Modern Optics No. 8, 25, Cambridge (1988).Google Scholar
  11. [11]
    K. C. Kulander, K. J. Schafer, K. L. Krause, in Proceedings of the SILAP III Workshop, Plenum Press, New York (1993).Google Scholar
  12. [12]
    P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).CrossRefGoogle Scholar
  13. [13]
    G. G. Paulus, W. Becker, W. Nicklich, H. Walther, J. Phys. B 27, L703 (1994).CrossRefGoogle Scholar
  14. [14]
    G. G. Paulus, W. Becker, H. Walther, Phys. Rev. A 52, 4043 (1995).CrossRefGoogle Scholar
  15. [15]
    T. F. Gallagher, T. J. Scholz, Phys. Rev. A 40, 2762 (1989).CrossRefGoogle Scholar
  16. [16]
    N. B. Delone and V. P. Krainov, Multiphoton Processes in Atoms (Springer-Verlag, Berlin, 1994); for a review of the concept of the tunneling time in constant fields, seeCrossRefGoogle Scholar
  17. E. H. Hauge, J. A. Støvneng, Rev. Mod. Phys. 59, 917(1989).CrossRefGoogle Scholar
  18. [17]
    G. G. Paulus, F. Zacher, H. Walther, A. Lohr, W. Becker, M. Kleber, Phys. Rev. Lett. 80, 484 (1998).CrossRefGoogle Scholar
  19. [18]
    M. Bellini, C. Lyngå, A. Tozzi, M. B. Gaarde, T. W. Hänsch, A. L’Huillier, C.-G. Wahlström, Phys. Rev. Lett. 81, 297 (1998).CrossRefGoogle Scholar
  20. [19]
    A. Rundquist, C. G. Durfee III, Z. Chang, C. Heme, S. Backus, M. M. Murnane, H. C. Kapteyn, Science 280, 1412 (1998).CrossRefGoogle Scholar
  21. [20]
    M. Lewenstein, K. C. Kulander, K. J. Schafer, P. H. Bucksbaum, Phys. Rev. A 51, 1495 (1995).CrossRefGoogle Scholar
  22. [21]
    B. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, L. F. DiMauro, Phys. Rev. Lett. 71, 3770 (1993).CrossRefGoogle Scholar
  23. [22]
    G. G. Paulus, W. Nicklich, H. Walther, Europhys. Lett. 27 267 (1994).CrossRefGoogle Scholar
  24. [23]
    L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964)Google Scholar
  25. L. V. KeldyshSov. Phys. JETP 20, 1307 (1965)].MathSciNetGoogle Scholar
  26. [24]
    F. H. M. Faisal, J. Phys. B 6, L89 (1973).CrossRefGoogle Scholar
  27. [25]
    H. R. Reiss, Phys. Rev. A 22, 1786 (1980).CrossRefGoogle Scholar
  28. [26]
    W. Becker, A. Lohr, M. Kleber, J. Phys. B 27, L325 (1995) andCrossRefGoogle Scholar
  29. W. Becker, A. Lohr, M. Kleber, J. Phys.28, 1931 (1995) (corrigendum).Google Scholar
  30. [27]
    A. Lohr, M. Kleber, R. Kopold, W. Becker, Phys. Rev. A 55, R4003 (1997).CrossRefGoogle Scholar
  31. [28]
    M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier, P. B. Corkum, Phys. Rev. A 49, 2117 (1994).CrossRefGoogle Scholar
  32. [29]
    M. Lewenstein, P. Salières, A. L’Huillier, Phys. Rev. A 52, 4747 (1995).CrossRefGoogle Scholar
  33. [30]
    G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, W. Becker, Phys. Rev. Lett. 84, 3791 (2000).CrossRefGoogle Scholar
  34. [31]
    P. Kruit, J. Kimman, H. G. Muller, M. J. van der Wiel, Phys. Rev. A 28, 248 (1983).CrossRefGoogle Scholar
  35. [32]
    H. G. Muller, A. Tip, M. J. van der Wiel, J. Phys. B 16, L679 (1983).CrossRefGoogle Scholar
  36. [33]
    M. P. Hertlein, P. H. Bucksbaum, H. G. Muller, J. Phys. B 30, L197 (1997).CrossRefGoogle Scholar
  37. [34]
    P. Hansch, M. A. Walker, L. D. Van Woerkom, Phys. Rev. A 55. R2535 (1997).CrossRefGoogle Scholar
  38. [35]
    H. G. Muller and F. C. Kooiman, Phys. Rev. Lett. 81, 1207 (1998).CrossRefGoogle Scholar
  39. [36]
    M. Nandor, M. A. Walker, L. D. Van Woerkom, H. G. Muller, Phys. Rev. A 60, R1771 (1999).CrossRefGoogle Scholar
  40. [37]
    H. G. Muller, Phys. Rev. A 60, 1341 (1999).CrossRefGoogle Scholar
  41. [38]
    G. G. Paulus, F. Grasbon, H. Walther, R. Kopold, W. Becker, (submitted).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • G. G. Paulus
    • 1
  • H. Walther
    • 1
    • 2
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany
  2. 2.Ludwig-Maximilians-Universität MünchenGermany

Personalised recommendations