Skip to main content

Intense-Field Many-Body S-Matrix Theory: Application to Recoil-Momentum Distributions for Laser-Induced Double Ionization

  • Chapter
Book cover Atoms, Solids, and Plasmas in Super-Intense Laser Fields
  • 704 Accesses

Abstract

In recent years very high intensity short-pulse lasers with high repitition rates have been available in the laboratories. This has led to investigations of laser-atom interaction processes at hitherto unaccessable domains of double ionization signals vs. field intensity. Furthermore, new detection techniques have opend up the possibility of measurements of momentum distributions of the emitted electrons and ions in coincidence. Thus, for example, double ionization yields of He atom interacting with intense short pulse lasers have been measured (e.g., [1, 2, 3, 4, 5, 6]). More recently the momentum distributions of the two electrons emitted in double ionization of noble gas atoms have been determined via the measurement of the recoil momentum of the doubly charged ions in coincidence with an electron [7, 8]. These results provide important new tests of the mechanism of double ionization process in intense ultrashort laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. N. Fittinghoff et al., Phys. Rev. Lett.69, 2642 (1992).

    Article  Google Scholar 

  2. B. Walker et al., Phys. Rev. A48, R894 (1993).

    Article  Google Scholar 

  3. K. Kondo et al., Phys. Rev. A48, R253l (1993).

    Article  Google Scholar 

  4. D. N. Fittinghoff et al., Phys. Rev. A49, 2174 (1994).

    Article  Google Scholar 

  5. B. Walker et al., Phys. Rev. Lett.73,1227 (1994).

    Article  Google Scholar 

  6. S. Augst et al., Phys. Rev. A52, R917 (1995);

    Article  Google Scholar 

  7. A. Talebpour et al., J. Phys. B30, 1721 (1997).

    Article  Google Scholar 

  8. Weber et al. Phys.Rev.Lett84, 443 (2000).

    Article  Google Scholar 

  9. Moshammer et al. Phys.Rev.Lett84, 447 (2000).

    Article  Google Scholar 

  10. F.H.M. Faisal and A. Becker, inSelected Topics on Electron Physics, Eds., D.H. Campbell an H. Kleinpoppen, Plenum Press: N.Y. (1996), p. 317.

    Google Scholar 

  11. A. Becker and F.H.M. Faisal, J.Phys. B29, L197 (1996);ibid 32,L225 (1999).

    Article  Google Scholar 

  12. F. H. M. Faisal and A. Becker, Laser Phys.7, 684 (1997); in

    Google Scholar 

  13. Multiphoton Processes 1996, ed. by P. Lambropoulos and H. Walther, Int. Nat. Conf. Ser. No. 154 (IOP: Bristol, 1997) p. 118.

    Google Scholar 

  14. A.Becker and F.H.M. Faisal, Phys.Rev. A59, R1742 (1999); ibid A59, R3182 (1999).

    Article  Google Scholar 

  15. A.Becker and F.H.M. Faisal, Phys.Rev.Lett84, 3546 (2000).

    Article  Google Scholar 

  16. J.S. Parker, K.T. Taylor, C.W. Clark and S. Blodgett-Ford, J. Phys. B29, L33 (1996);

    Article  Google Scholar 

  17. E.S. Smyth, J.S. Parker and K.T. Taylor, Comp. Phys. Comm. 144,1 (1998).

    Article  Google Scholar 

  18. F.H.M. Faisal,Theory of Multiphoton Processes, Plenum Press, N.Y. (1987).

    Book  Google Scholar 

  19. F.H.M. Faisal, Phy. Lett., A 187,180 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Becker and F.H.M. Faisal, Phys.Rev. A50, 3256 (1994).

    Article  Google Scholar 

  21. C. Joachain,Qunatum Collision Theory, 3rd. edn., North-Holland, Amsterdam (1983).

    Google Scholar 

  22. H. R. Reiss, Phys. Rev. A22, 1786 (1980).

    Article  Google Scholar 

  23. L. V. Keldysh, Zh. Eksp. Teor. Fiz.47, 1945 (1964)

    Google Scholar 

  24. L. V. KeldyshSov. Phys. JETP20, 1307 (1965)];

    Google Scholar 

  25. F. H. M. Faisal, J. Phys. B6, L89 (1973);

    Article  Google Scholar 

  26. F.H.M. Faisal, A. Becker and J. Muth-Böhm, Laser Phys.9, 115 (1999).

    Google Scholar 

  27. P. Corkum, Phys. Rev. Lett.,71, 1994 (1993).

    Article  Google Scholar 

  28. A. Erdélyi (Ed.),Higher Transcendental Functions, Vol. 2, (New York: McGraw-Hill, 1953).

    Google Scholar 

  29. The uncertainty in the intensity measurement is ≈ 15 - 30%, and that of momentum resolution ≈ 0.2 - 0.4 a.u. [R. Dörner H. Rottke (private communication)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faisal, F.H.M. (2001). Intense-Field Many-Body S-Matrix Theory: Application to Recoil-Momentum Distributions for Laser-Induced Double Ionization. In: Batani, D., Joachain, C.J., Martellucci, S., Chester, A.N. (eds) Atoms, Solids, and Plasmas in Super-Intense Laser Fields. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1351-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1351-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5511-3

  • Online ISBN: 978-1-4615-1351-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics