Skip to main content

Fuzzy, Non Commutative SpaceTime: A New Paradigm for A New Century

  • Chapter
Frontiers of Fundamental Physics 4

Abstract

At the beginning of the twentieth century several Physicists including Poincare and Abraham amongst others were tinkering unsuccessfully with the problem of the extended electron[1, 2]. The problem was that an extended electron appeared to contradict Special Relativity, while on the other hand, the limit of a point particle lead to inexplicable infinities. These infinities dogged physics for many decades. Infact the Heisenberg Uncertainity Principle straightaway leads to infinities in the limit of spacetime points. It was only through the artifice of renormalization that ’t Hooft could finally circumvent this vexing problem, in the 1970s (Cf. paper by ’t Hooft in this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.G. Sidharth, in Instantaneous Action at a Distance in Modern Physics: “Pro and Contra” , Eds., A.E. Chubykalo et. al., Nova Science Publishing, New York, 1999.

    Google Scholar 

  2. F. Rohrlich, “Classical Charged Particles”, Addison-Wesley, Reading, Mass., 1965.

    Google Scholar 

  3. A.M. Polyakov, “Gravitation and Quantizations”, Eds. B. Julia and J. Zinn-Justin, Les Houches, Session LVII, 1992, Elsevier Science, 1995, p.786–804.

    Google Scholar 

  4. T.D. Lee, Physics Letters, Vol.122B, No.3,4, 10March 1983, p.217–220.

    ADS  Google Scholar 

  5. B.G. Sidharth, Chaos, Solitons and Fractals, 12(2001), 173–178.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. C. Wolf, Il Nuovo Cimento, Vol.100B, No.3, September 1987, p.431–434.

    Google Scholar 

  7. J.A. Wheeler, “Superspace and the Nature of Quantum Geometrodynamics”, Battelles Rencontres, Lectures, Eds., B.S. De Witt and J.A. Wheeler, Ben- jamin, New York, 1968.

    Google Scholar 

  8. A. Kempf, in“From the Planck Length to the Hubble Radius”, Ed. A. Zichichi, World Scientific, Singapore, 2000, p.613–622.

    Google Scholar 

  9. G. Veneziano, Physics Reports, 9, No.4, 1974, p.199–242.

    Article  ADS  Google Scholar 

  10. G. Fogleman, Am.J.Phys., 55(4), 1987, pp.330–336.

    Article  ADS  Google Scholar 

  11. G. Veneziano, “Quantum Geometric Origin of All Forces in String Theory” in “The Geometric Universe”, Eds. S.A. Huggett et al., Oxford University Press, Oxford, 1998, pp.235–243.

    Google Scholar 

  12. P. Ramond, Phys.Rev.D., 3(10), 1971, pp.2415–2418.

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Scherk, Rev.Mod.Phys., 47 (1), 1975, pp.1–3ff.

    Article  MathSciNet  Google Scholar 

  14. W. Witten, Physics Today, April 1996, pp.24–30.

    Google Scholar 

  15. Y. Ne’eman, in Proceedings of the First International Symposium, “Frontiers of Fundmental Physics”, Eds. B.G. Sidharth and A. Burinskii, Universities Press, Hyderabad, 1999, pp.83ff.

    Google Scholar 

  16. C.W. Misner, K.S. Thorne and J.A. Wheeler, “Gravitation”, W.H. Freeman, San Francisco, 1973, pp.819ff.

    Google Scholar 

  17. B.G. Sidharth, Ind.J. Pure & Appld.Phys., Vol.35, 1997, pp.456–471.

    ADS  Google Scholar 

  18. B.G. Sidharth, Int.J.Mod.Phys.A, 13 (15), 1998, p.2599ff.

    Article  ADS  Google Scholar 

  19. P.A.M. Dirac, “The Principles of Quantum Mechanics”, Clarendon Press, Ox- ford, 1958, pp.4ff, pp.253ff.

    Google Scholar 

  20. C. Moller, “The Theory of Relativity”, Clarendon Press, Oxford, 1952, pp.170 ff.

    Google Scholar 

  21. L. Nottale, “Scale relativity and gauge invariance”, to appear in Chaos, Solitons and Fractals, special issue in honor of M. Conrad.

    Google Scholar 

  22. H.S. Snyder, Physical Review, Vol.72, No.1, July 1 1947, p.68–71.

    Article  ADS  MATH  Google Scholar 

  23. V.G. Kadyshevskii, Translated from Doklady Akademii Nauk SSSR, Vol.147, No.6, December 1962, p.1336–1339.

    Google Scholar 

  24. L. Bombelli, J. Lee, D. Meyer and R.D. Sorkin, Physical Review Letters, Vol.59, No.5, August 1987, p.521–524.

    Article  MathSciNet  ADS  Google Scholar 

  25. B.G. Sidharth, Chaos, Solitons and Fractals, 11 (2000), 1269–1278.

    Article  ADS  MATH  Google Scholar 

  26. V. Heine, “Group Theory in Quantum Mechanics”, Pergamon Press, Oxford, 1960, p.364.

    Google Scholar 

  27. J.R.Klauder, “Bosons Without Bosons” in Quantum Theory and The Struc- tures of Time and Space, Vol.3 Eds by L. Castell, C.F. Van Weiizsecker, Carl Hanser Verlag, Munchen 1979.

    Google Scholar 

  28. J. Madore, Class.Quantum Grav. 9, 1992, p.69–87.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. [29] B.L. Cerchiai, J. Madore, S.Schraml, J. Wess, Eur.Phys.J. C 16, 2000, p. 169– 180.

    Article  MathSciNet  ADS  Google Scholar 

  30. J. Schwarz, M.B. Green and E. Witten, “SuperString Theory”, Vol.I, Cam- bridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  31. B.G. Sidharth, “Quantum Superstrings and Quantized Fractal Space Time”, to appear in Chaos, Solitons and Fractals.

    Google Scholar 

  32. B.G. Sidharth, “The Chaotic Universe”, Nova Science Publishers, New York, In press.

    Google Scholar 

  33. J.A. Wheeler, “Geometrodynamics and the Issue of the Final State”, Lectures at l”Ecole d’ete de Physique Theorique, Les Houches, Haute-Savole, France, July 1963.

    Google Scholar 

  34. T. Saito, Gravitation and Cosmology, 6 (2000), No.22, pp. 130–136.

    MathSciNet  ADS  MATH  Google Scholar 

  35. D.I. Olive, Nuclear Physics B (Proc. Suppl.) 46, 1996, 1–15.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. S. Zakrzewski, “Quantization, Coherent States, and Complex Structures”, Ed. J.P. Antoine et al., Plenum Press, New York, 1995, p.249ff.

    Google Scholar 

  37. B.G. Sidharth, in Proceedings of the International Symposium on “Frontiers of Fundamental Physics”, Vol.2, Universities Press, Hyderabad, 2000, p.138ff. Also xxx.lanl.gov quant-ph/9803048.

    ADS  Google Scholar 

  38. L. Nottale, “Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity”, World Scientific, Singapore, 1993, p.312.

    Google Scholar 

  39. B. Greene, “The Elegant Universe”, Jonathan Cape, London, 1999, pg.19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sidharth, B.G. (2001). Fuzzy, Non Commutative SpaceTime: A New Paradigm for A New Century. In: Sidharth, B.G., Altaisky, M.V. (eds) Frontiers of Fundamental Physics 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1339-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1339-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5505-2

  • Online ISBN: 978-1-4615-1339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics