The “Mass Boom”: The Effect of the Expansion of the Universe on the Fundamental “Constants”

  • A. Alfonso-Faus


Perhaps the most analyzed case for the possibility of time-varying “constants” corresponds to Newton’s gravitational constant G. Much work has been done in the past. A few names that have been involved in this research are Eddington [1], Dirac [2], Brans and Dicke [3], Hoyle and Narlikar [4], Narlikar [5], Canuto [6], Adams [7], Alfonso-Faus [8] etc. At present the general feeling is that there is no evidence for a changing G. But the vast majority of this work has been done leaving the speed of light constant. One exception is the work of Petit [9], Alfonso-Faus [10], Belinchón [11] and Belinchón and Alfonso-Faus [12] using the conservation equations to keep G/c 2 constant. Hence under this view, a time varying G implies a time varying speed of light c. We proceed here to further analyze this approach.


Dark Matter Gravity Quantum Lorentz Invariance Magnetic Monopole Zeeman Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Eddington, “The Expanding Universe”, Cambridge Univ. Press, 1933.CrossRefGoogle Scholar
  2. [2]
    P.A.M. Dirac, Nature, 164, 637, 1937.Google Scholar
  3. [3]
    C. Brans, & R.H. Dicke, Phys. Rev., 124, 925, 1961.MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    F. Hoyle, & J.V. Narlikar, Proc. Roy. Soc. A270, 334, 1962.MathSciNetADSGoogle Scholar
  5. [5]
    J.V. Narlikar, Nature, 242, 135, 1973.ADSCrossRefGoogle Scholar
  6. [6]
    V. Canuto, et al., Phys. Rev. (Ser. 3), D16, 1643, 1977.MathSciNetADSGoogle Scholar
  7. [7]
    P.J. Adams, Interntl. J. of Theor. Physics, 22, 421, 1983.ADSCrossRefGoogle Scholar
  8. [8]
    A. Alfonso-Faus, Interntl. J. of Theor. Physics, 25. No. 3, 293, 1986.ADSCrossRefGoogle Scholar
  9. [9]
    J.P. Petit, Mod. Phys. Let. 3, 16, 1733, 1988.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Alfonso-Faus, Proc. E.R.E. Astrof. de Canarias, 1987.Google Scholar
  11. [11]
    J.A. Belinchón, Interntl. J. of Theor. Physics, 39 No 6, 1669, 2000.MATHCrossRefGoogle Scholar
  12. [12]
    J.A. Belinchón. and A. Alfonso-Faus, Interntl. J. of Modern Phys. DGoogle Scholar
  13. [13]
    A. Guth, Phys. Rev. D23 347, 1981.ADSGoogle Scholar
  14. [14]
    A. Linde, Phys. Lett. B 108, 1220, 1982.MathSciNetGoogle Scholar
  15. [15]
    J. Moffat, Inter. J. of Phys. D, Vol. 2, No. 3, 1993, 351–365.MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    A. Albrecht and J. Magueijo, Phys. Rev. D 59 043516, 1999.ADSCrossRefGoogle Scholar
  17. [17]
    J. Barrow, Phys. Rev. D 59 043515, 1999.MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A. Alfonso-Faus, A., Physics Essays,Vol.12,No.4,December 1999.Google Scholar
  19. [19]
    B.G. Sidharth, astro-ph/9904088, 2000 arXiv:Physics/0004002-3-4, 1999.Google Scholar
  20. [20]
    S. Weinberg, “Gravitation and Cosmology”, NY, John Wiley & Sons, 1992.Google Scholar
  21. [21]
    A. Balbi, “Cosmology and Particle Physics”,Proc.of the CAPP 2000 Conference, eds. J. Garcia-Bellido et al., Verbier, Switzerland, 2000 and Astro- ph/0011202Google Scholar
  22. [22]
    S. Perlmutter, et al., Astro. Jour. 517,1999, 565–586.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • A. Alfonso-Faus
    • 1
  1. 1.E.U.I.T. Aeronáutica Plaza Cardenal Cisneros s/nMadridEspaña

Personalised recommendations