Skip to main content

The Self-Intersecting Brane World

  • Chapter
Frontiers of Fundamental Physics 4
  • 242 Accesses

Abstract

After so many years of intensive research the quantization of gravity is still an unfinished project. Amongst many approaches followed, there is the one which seems to be especially promising. This is the so called induced gravity proposed by Sakharov [1]. His idea was to treat the metric not as a fundamental field but as one induced from more basic fields. The idea has been pursued by numerous authors [2]; especially illuminating are works by Akama, Terazawa and Naka [3]. Their basic action contains N scalar fields and it is formally just a slight generalization of the well-known Dirac-Nambu-Goto action for an n-dimensional world sheet swept by an (n - l)-dimensional membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] A. D. Sakharov Dok. Akad. Nauk. SSSR 177, 70, 1967; Phys. JETP, 12, 1040,1968.

    ADS  Google Scholar 

  2. [1] A. D. Sakharov,| Dok. Akad. Nauk. SSSR 177, 70, 1967; Sov. Phys. JETP, 12, 1040, 1968.

    Google Scholar 

  3. S.L. Adler, Rev. Mod. Phys., 54, 729, 1982, and references therein.

    Article  ADS  Google Scholar 

  4. K. Akama, Progr. Theor. Phys., 60, 1900, 1978; 79, 1299, 1988; K. Akama and H. Terazawa, Prog. Theor. Phys., 79, 740, 1988; H. Terazawa, in Proceedings of the First International A. D. Sakharov Conference on Physics, L. V. Keldysh, et al., eds. Nova Science, New York, 1991; S. Naka and C. Itoi, Progr. Theor. Phys., 70, 1414, 1983.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. [3] K. Akama, Progr. Theor. Phys., 60, 1900, 1978; 79, 1299, 1988; K. Akama and H. Terazawa, Prog. Theor. Phys., 79, 740, 1988

    Article  ADS  Google Scholar 

  6. H. Terazawa, in Proceedings of the First International A. D. Sakharov Conference on Physics, L. V. Keldysh, et al., eds. Nova Science, New York, 1991; S. Naka and C. Itoi, Progr. Theor. Phys., 70, 1414, 1983.

    Article  Google Scholar 

  7. T. Regge and C. Teitelboim, in ”Proceedings of the Marcel Grossman Meeting, Trieste, 1975.

    Google Scholar 

  8. M. Pavšič, Class. Quant. Grav., 2, 869, 1985

    MATH  Google Scholar 

  9. V. Tapia, Class. Quant. Grav., 6, L49, 1989

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. D.Maia, Class. Quant. Grav., 6, 173, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. Pavšič, Foundations of Physics, 24, 1495, 1994.

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Pavšič, Physics Letters A, 116, 1, 1986.

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Pavšič, Gravitation & Cosmology, 2, 1, 1996.

    ADS  MATH  Google Scholar 

  14. I.A. Bandos, Modern Physics Letters A, 12, 799, 1997; I. A. Bandos and W. Kummer, hep-th/9703099.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. [10] M. Pavšič, ”The Landscape of Theoretical Physics: A Global View”, Kluwer Academic, to appear.

    Google Scholar 

  16. M. Pavsic, Foundations of Physics, 26, 159, 1996.

    Article  ADS  Google Scholar 

  17. A. Sugamoto, Nuclear Physics B, 215, 381, 1983

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Pavšič, Class. Quant. Grav.,5, 247, 1988

    Google Scholar 

  19. M. Pavšič, Physics Letters B, 197, 327, 1987.

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Basler, Fortschr, 42, 1195, 1979

    Google Scholar 

  21. K. Fujikawa, Phys. Rev. Lett., 21, 2448, 1980

    Google Scholar 

  22. K. Fujikawa Nucl 1983; Phys. Rev. D 226; 437

    Google Scholar 

  23. M. Basler, Fortschr. Phys., 41, 1, 1993.

    Google Scholar 

  24. M. Pavsic, Phys. Lett. A, 254, 119, 1999.

    Article  Google Scholar 

  25. [13a] S. M. Christensen Phys. Rev. D14 1976; 2490

    ADS  Google Scholar 

  26. Quantum Fields in Curved Space”, Cambridge University Press,Cambridge, 1982

    Book  Google Scholar 

  27. [13] See e.g. B.S. De Witt, Phys. Reports, 19, 295, 1975; S. M. Christensen, Phys. Rev., D14, 2490, 1976; N. D. Birrell and P.C.W. Davies, ”Quantum Fields in Curved Space”, Cambridge University Press, Cambridge, 1982; H. Boschi-Filho and C. P. Natividade, Phys. Rev. D, 46, 5458, 1992.

    Article  MathSciNet  ADS  Google Scholar 

  28. A.Sugamoto, Nuclear Physics B, 215, 381, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Pavšic, Found. Phys. 25, 819; 1995

    Article  MathSciNet  ADS  Google Scholar 

  30. [15] M. Pavšic, Found. Phys., 25, 819, 1995;M. Pavšic, Nuovo Cimento A, 108, 221, 1995.

    Article  ADS  Google Scholar 

  31. M. Pavšic, Foundations of Physics, 26, 159, 1996.

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Pavšic, Nuovo Cimento A, 110, 369, 1997.

    Article  ADS  Google Scholar 

  33. R.Floreanini and R.Percacci, Modern Physics Letters A, 5, 2247, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. See, e.g., M. Kaku, ”Introduction to Superstrings” Springer-Verlag, New York, N.Y., 1988.

    Google Scholar 

  35. L. Randall and R. Sundrum, Physical Review Letters, 83, 3370, 1999; 83, 4690, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. G. Dvali, G. Gabadadze and M. Porrati, Physics Letters B, 485, 208, 2000.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. B.S. DeWitt, Phys. Rep., 19, 295, 1975

    Article  ADS  Google Scholar 

  38. S.M. Christensen, Phys. Rev. D, 14, 2490, 1976

    Article  MathSciNet  ADS  Google Scholar 

  39. Phys. Rev. D 15, 1469

    Article  ADS  Google Scholar 

  40. Phys. Rev. D 20, 2499

    Article  ADS  Google Scholar 

  41. H. Boschi-Filho and C.P. Natividade, Phys. Rev. D, 46, 5458, 1992

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Follacci, Phys. Rev. D, 46, 2553, 1992

    Article  MathSciNet  ADS  Google Scholar 

  43. [22] B.S. DeWitt, Phys. Rep., 19, 295, 1975; S.M. Christensen, Phys. Rev. D, 14, 2490, 1976; L.S. Brown, Phys. Rev. D 15, 1469, 1977; T.S. Bunch and L. Parker, Phys. Rev. D 20, 2499, 1979; H. Boschi-Filho and C.P. Natividade, Phys. Rev. D, 46, 5458, 1992; A. Follacci, Phys. Rev. D, 46, 2553, 1992; A. Sugamoto, Nuclear Physics B, 215, 381, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  44. [23] M. Pavšic, ”Clifford Algebra Based Polydimensional Relativity and Relativistic Dynamics”, hep-th 0011216.

    Google Scholar 

  45. M. Pavšic, Phys. Lett. A, 254, 119, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavšič, M. (2001). The Self-Intersecting Brane World. In: Sidharth, B.G., Altaisky, M.V. (eds) Frontiers of Fundamental Physics 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1339-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1339-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5505-2

  • Online ISBN: 978-1-4615-1339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics