Skip to main content
  • 248 Accesses

Abstract

What is the fate of a star after it has exhausted its nuclear fuel? It can no longer remain in equilibrium, and must undergo gravitational collapse. If the stsar is not too massive it may settle down to a white dwarf or a neutron star. However, if the star is more massive than a few solar masses, then we have to invoke the general theory of relativity to study its final state. This theory is valid up to the Planck length (10-33 cm), below which quantum effects becomes important. In the early seventies, it was shown that singularities develop as a result of gravitational collapse where quantities such as the energy density of the collapsing matter and the curvature of the spacetime diverge [1]. However, the singularity theorems only predict the existence of singularities, but do not give any information about their nature or causal structure, e.g., can such a singularity communicate with a distant observer in the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Hawking and G. F. R. Ellis, “The Large Scale Structure of Spacetime”, Cambridge University Press, Cambridge, 1973.

    Book  Google Scholar 

  2. P. S. Joshi, “Global Aspects in Gravitation and Cosmology”, Cambridge U- niversity Press, Cambridge, 1993

    MATH  Google Scholar 

  3. C. J. S. Clarke, Class. Quantum Grav., 10, 1375, 1993

    Google Scholar 

  4. T. P. Singh, in “Classical and Quantum Aspects of Gravitation and Cosmology”, eds. G. Date and B. R. Iyer, Institute of Mathematical Sciences Report 117, 1996

    Google Scholar 

  5. T. P. Singh, gr-qc/9805066; P. S. Joshi, gr-qc/0006101; S Jhingan and G. Magli, gr-qc/9903103.

    Google Scholar 

  6. R. Penrose, Riv. del Nuovo Cim., 1, 252, 1969.

    ADS  Google Scholar 

  7. R. M. Wald, gr-qc/9710068.

    Google Scholar 

  8. see, for example, Joshi (Ref. 2).

    Google Scholar 

  9. D. Markovic, S. L. Shapiro, Phys. Rev., D 61, 084029, 2000.

    Article  ADS  Google Scholar 

  10. Lake, K. gr-qc/0002044 (unpublished)

    Google Scholar 

  11. R. Cai, L. Qiao and Y. Zhang, Mod. Phys. Lett. A 12, 155, 1997.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J. P. S. Lemos, Phys. Rev. D 59, 044020, 1999.

    Article  MathSciNet  ADS  Google Scholar 

  13. S. M. Wagh, S. D. Maharaj, Gen. Rel. Grav., 31, 975, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S. G. Ghosh and A. Beesham, Phys. Rev. D, 61, 067502, 2000.

    Article  MathSciNet  ADS  Google Scholar 

  15. S. W. Hawking and R. Penrose, “The Nature of Space and Time”, Princeton University Press, Princeton, 1996.

    MATH  Google Scholar 

  16. P. C. Vaidya, Proc. Indian Acad. Sci., A33, 264, 1951

    MathSciNet  ADS  Google Scholar 

  17. P. C. Vaidya Reprinted, Gen. Rel. Grav., 31, 119, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. P. C. Vaidya, and K. B. Shah, Proc. Nat. Inst. Sci., 23, 534, 1957.

    MathSciNet  Google Scholar 

  19. W. B. Bonnor and P. C. Vaidya, Gen. Rel. Grav., 1, 159, 1970.

    Article  MathSciNet  Google Scholar 

  20. K. Lake and T. Zannias, Phys. Rev. D 43, 1798, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Wang, and Y. Wu, Gen. Rel. Grav., 31, 107, 1999

    Article  ADS  MATH  Google Scholar 

  22. A. Patino and H. Rago, Phys. Lett., A 121, 329, 1987.

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Ori, Class. Quantum Grav., 8, 1559, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  24. m α v was introduced by A. Papapetrou (see Ref 5 above) and subsequently used by many authors, e2 ∝ v2 has been examined by Lake and Zannias (see Ref 7 above).

    Google Scholar 

  25. A spherical symmetric space-time is self similar if gtt(ct,cr) = gtt(t,r) and grr(ct,cr) = 9rr(t,r) for every c > 0. A self similar spacetime is characterized by the existence of a homothetic Killing vector.

    Google Scholar 

  26. First we note that eq. (16) being a cubic equation, it must have one real root. From theory of equation it is easy to see, for λ > 0 and µ2 > 0, any real root of the eq. (16) must be positive as negative values of Xo do not solve this equation.

    Google Scholar 

  27. S. S. Deshingkar, P. S. Joshi and I. H. Dwivedi, Phys. Rev., D 59, 044018, 1999.

    Article  ADS  Google Scholar 

  28. B. C. Nolan, Phys. Rev. D, 60, 024014, 1999.

    Article  MathSciNet  ADS  Google Scholar 

  29. F. J. Tipler, C. J. S. Clarke, and G. F. R. Ellis, in “General Relativity and Gravitation”, ed. A. Held, Plenum, New York, 1980.

    Google Scholar 

  30. S. Barve and T. P. Singh, Mod. Phys. Lett., A12, 2415, 1997.

    MathSciNet  ADS  Google Scholar 

  31. S. L. Shapiro and S. A. Teukolsky, Phys. Rev. Lett., 66, 994, 1991

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. ibid. Phys. Rev., D45 2006, 1992

    MathSciNet  ADS  Google Scholar 

  33. P. S. Joshi and A. Krolak, Class. Quantum Grav., 13 3069, 1996

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. T. Nakamura, M. Shibata and K. Nakao, Prog. Theor. Phys., 89 821, 1993.

    Article  ADS  Google Scholar 

  35. D. Christodoulou, Ann. Math., 140, 607, 1994;

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Christodoulou, Ann. Math.149, 183, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. W. Choptuik, Phys. Rev. Lett., 70, 9, 1993

    Article  ADS  Google Scholar 

  38. C. Gundlack,gr-qc/0001046.

    Google Scholar 

  39. H. Iguchi, K. Nakao and T. Harada, Phys. Rev., D57, 7262, 1998

    MathSciNet  ADS  Google Scholar 

  40. H. Iguchi, K. Nakao and T. Harada Prog. Thoer. Phys., 101, 1235, 1999.

    Article  ADS  Google Scholar 

  41. R. V. Saraykar and S. H. Ghate, Class. Quantum Grav., 16, 281, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. F. Mena, R. K. Tavakol and P. S. Joshi, gr-qc/0002062.

    Google Scholar 

  43. S. Hod and T. Piran, gr-qc/0011003.

    Google Scholar 

  44. A. Krilak, Prog. Theor. Phys. Suppl., 136, 45, 1999.

    Article  ADS  Google Scholar 

  45. P. S. Joshi, N. Dadhich and R. Maartens, Mod. Phys. Lett. A, 15, 991, 2000

    Article  ADS  Google Scholar 

  46. S. K. Chakravarti and P. S. Joshi, Int. J. Mod. Phys. D., 3, 647, 1994.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beesham, A., Ghosh, S.G. (2001). Gravitational Collapse. In: Sidharth, B.G., Altaisky, M.V. (eds) Frontiers of Fundamental Physics 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1339-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1339-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5505-2

  • Online ISBN: 978-1-4615-1339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics