A Confrontation With Infinity

  • Gerard’t Hooft


Early attempts at constructing realistic models for the weak interaction between elementary particles were off-set by the emergence of infinite, hence meaningless, expressions when one tried to derive the radiative corrections. When models based on gauge theories with Higgs mechanism were discovered to be renormalizable, the bothersome infinities disappeared-they cancelled out. If this success seemed to be due to mathematical sorcery, it may be of interest to explain the physical insights on which it is actually based.


Gauge Theory Higgs Boson Large Hadron Collider Higgs Mass Distance Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.P. Crease and C.C. Mann, ”The Second Creation: Makers of the Revolution in Twentiety-century Physics”, Macmillan, New York, 1986.Google Scholar
  2. [2]
    A. Pais, ”Inward Bound: Of Matter and Forces in the Physical World”, Oxford University, London, 1986.Google Scholar
  3. [3]
    K.G. Wilson and J. Kogut, Phys.Rep., Phys.Lett. 12C, 1974, 75.Google Scholar
  4. [4]
    H.D. Politzer, Phys.Rep., Phys.Lett. 14C, 1974, 129.Google Scholar
  5. [5]
    B.W. Lee, “Chiral Dynamics”, Gordon and Breach, New York, 1972, pp.60–67.Google Scholar
  6. [6]
    D.J. Gross, in ”The Rise of the Standard Model”, Cambridge University, Cambridge, 1997, p. 199.Google Scholar
  7. [7]
    G ’t Hooft, Nucl.Phys.B 35, 1971, 167.ADSCrossRefGoogle Scholar
  8. [8]
    S. Coleman, ”Secret Symmetries”, in ”Laws of Hadronic Matter”, Ed. A. Zichichi, Academic, New York, London, 1975.Google Scholar
  9. [9]
    P.W. Higgs, Phys.Lett. 12, 1964a, 132.ADSGoogle Scholar
  10. [10]
    RW. Higgs, Phys.Rev.Lett. 13, 1964b, 321.MathSciNetCrossRefGoogle Scholar
  11. [11]
    RW. Higgs, Phys.Rev. 145, 1966, 1156.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    E. Accomando, et al., Phys. Rep. 299, 1998, 1.ADSCrossRefGoogle Scholar
  13. [13]
    P.M. Zerwas, “Physics with an e + e - linear collider at high luminosity”, Cargese lectures 1999, preprint DESY, 99–178.Google Scholar
  14. [14]
    J. Ellis, “Possible Accelerators at CERN beyond the LHC”, preprint CERN-TH/99–350, hep-ph/9911440, 1999.Google Scholar
  15. [15]
    A. Zichichi, ”Fifty years of subnuclear physics: From past to future and the ELN project”, in ”Highlights of Subnuclear Physics: 50 Years Later: Proceedings of the International School of Subnuclear Physics”, Ed. A. Zichichi, World Scientific, Singapore and River Edge, London, 1999, p. 161.Google Scholar
  16. [16]
    S. Ferrara, Ed.”Supersymmetry”, Vol.1, North Holland, Amsterdam, 1987.Google Scholar
  17. [17]
    S. Ferrara, Ed.”Supersymmetry”, Vol.2, North Holland, Amsterdam, 1987.Google Scholar
  18. [18]
    J. Polchinski, ”String Theory, Vol.1, An Introduction to the Bosonic String, Cambridge Monographs on Mathematical Physics”, Ed. RV. Landshoff et al., Cambridge University, Cambridge, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Gerard’t Hooft
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations