Skip to main content
  • 182 Accesses

Abstract

The solution of linear systems of equations on advanced parallel and/or vector computers is an important area of ongoing research. The development of efficient equation solvers is particularly important for static and dynamic (linear and non-linear) structural analyses, sensitivity and structural optimization, control-structure interactions, ground water flows, panel flutters, eigenvalue analysis etc…. [10.110.19]. Modern high-performance computers (such as Cray-YMP, Cray-C90, Intel Paragon, IBM-SP2) have both parallel and vector capability, thus algorithms that exploit parallel and/or vector capabilities are the most desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.13 References

  1. Pissanetzky, S., “Sparse Matrix Technology,” Academic Press, Inc., London (1984).

    Google Scholar 

  2. Agarwal, T.K., Storaasli, O.O., and Nguyen, D.T., “A Parallel-Vector Algorithm for Rapid Structural Analysis on High Performance Computers,” to appear in Computers and Structures Journal.

    Google Scholar 

  3. Nguyen, D.T., Storaasli, O.O., Carmona, E.A., Al-Nasra, M., Zhang, Y., Baddourah, M.A. and Agarwal, T.K., “Parallel-Vector Computation for Linear Structural Analysis and Nonlinear Unconstrained Optimization Problems,” Computing Systems in Engineering, An International Journal, Vol.2, No.2/3, September 1991, (Pergamon Press), pp. 175–182.

    Article  Google Scholar 

  4. Qin, J., Gray,Jr, C.E., Mei, C. and Nguyen, D.T., “A Parallel-Vector Equation Solver for Unsymmetric Matrices on Supercomputers,” Computing Systems in Engineering, An International Journal, Vol.2, No.2/3, September 1991 (Pergamon Press), pp. 197–202.

    Article  Google Scholar 

  5. Zhang, Y. and Nguyen, D.T., “Parallel-Vector Sensitivity Calculations in Linear Structural Dynamics,” Computing Systems in Engineering Journal, Vol.3, No. 1-4, pp.365–378, (1992).

    Article  Google Scholar 

  6. Belvin, W.K., Maghami, P.G. and Nguyen, D.T., “Efficient Use of High Performance Computers for Integrated Controls and Structures Design,” Computing Systems in Engineering Journal, Vol.3, No. 1-4, pp. 181–188, (1992).

    Article  Google Scholar 

  7. Qin, J. and Nguyen, D.T., “A Parallel-Vector Equation Solver for Distributed Memory Computers,” Computing Systems in Engineering journal, Vol.5, No. 1, (1994).

    Google Scholar 

  8. Maker, B.N., Qin, J. and Nguyen, D.T., “Performance of NIKE3D with PVSOLVE on Vector and Parallel Computers,” to appear in Computing Systems in Engineering Journal.

    Google Scholar 

  9. Qin, J. and Nguyen, D.T., “A Parallel-Vector Simplex Algorithm on Distributed Memory Computers,” to appear in Optimization Journal.

    Google Scholar 

  10. Akan, A.O., Qin, J., Nguyen, D.T., and Basco, D.R., “Parallel Computation for Groundwater Flow,” Proceedings of the International Groundwater Management Symposium, San Antonio, TX (August 1995)

    Google Scholar 

  11. Qin, J., Nguyen, D.T. and Zhang, Y., “Parallel-Vector Lanczos Eigen-Solver for Structural Vibration Problems,” Proceedings of the 4th International Conference on Recent Advances in Structural Dynamics, Institute of Sound and Vibration Research, University of Southampton, Southampton, England (July 15-18, 1991).

    Google Scholar 

  12. Bailey, D.H., Barszcz, E., Dagum, L., and Simon, H.D., “NAS Parallel Benchmark Results 10-93,” NASA Ames Research Center Report, ARC275, Moffett Field, CA.

    Google Scholar 

  13. Sporzynski, Steven R., “Vector/Parallel Skyline Matrix Routines for the IBM-3090,” Technical Report, Washington Systems Center, IBM Corp., 18100 Frederick Pike, Gaithersburg, MD 20879 (May 1990).

    Google Scholar 

  14. Zheng, D. and Chang, T.Y.P., “Parallel Cholesky Method on MIMD with Shared Memory,” Computers and Structures, Vol.56, No.l, pp.25–38 (1995).

    Article  MATH  Google Scholar 

  15. Tong, Pin, Rossettos, John N., “Finite Element Method: Basic Technique and Implementation.” the MIT Press, Cambridge, Massachusetts, and London, England.

    Google Scholar 

  16. Ortega, J.M., “Introduction to Parallel and Vector Solution of Linear Systems,” Plenum Press (1988).

    Google Scholar 

  17. Khan, A.I. and Topping, B.H.V., “Parallel-Finite Element Analysis Using the Jacobi-Conditioned Conjugate Gradient Algorithm,” Information Technology for Civil and Structural Engineers,” B.H.V. Topping & A.I. Khan (Eds.), Civil-Comp. Press, Edinburgh, 245–255 (1993).

    Chapter  Google Scholar 

  18. Khan, A.I., and Topping, B.H.V., “A Transputer Routing Algorithm for Nonlinear or Dynamic Finite Element Analysis,” Engineering Computations, Vol.11, pp.549–564 (1994).

    Article  MATH  Google Scholar 

  19. Topping, B.H.V. and Khan, A.I., “Parallel Computations for Structural Analysis, Re-Analysis and Optimization,” Optimization of Large Structural Systems, Vol.11, pp.767–792 (G.I.N. Rozvany, Ed., 1993 Kluwer Academic Publishers, Netherlands).

    Google Scholar 

  20. Duff, I.S. and Stewart, G.W. (Editors), “Sparse Matrix Proceedings 1979,” SIAM (1979)

    Google Scholar 

  21. Duff, I.S., Grimes, R.G. and Lewis, J.G., “Sparse Matrix Test Problems,” ACM Trans. Math Software, 15, pp.1–14 (1989).

    Article  MATH  Google Scholar 

  22. George, J.A. and Liu, W.H., “Computer Solution of Large Sparse Positive Definite Systems,” Prentice-Hall, Englewood Cliffs, NJ (1981).

    Google Scholar 

  23. Damhaug, A.C., Mathisen, K.M., and Okstad, K.M., “The Use of Sparse Matrix Methods in Finite Element Codes for Structural Mechanics Applications,” Department of Structural Engineering, The Norwegian Institute of Technology, N-7034 Troudheim, Norway (1993).

    Google Scholar 

  24. Noor, A.K., “Parallel Processing In Finite Element Structural Analysis,” in Parallel Computations and Their Impact on Mechanics, ASME, pp.253–277, A.K. Noor (Ed.) 1987.

    Google Scholar 

  25. Law, K.H. and Mackay, D.R., “A Parallel Row-Oriented Sparse Solution Method for Finite Element Structural Analysis,” Inter. Journal for Num. Meth. in Engr., Vol.36, pp.2895–2919 (1993).

    Article  Google Scholar 

  26. Bathe, K.J., Finite Element Procedures, Prentice-Hall (1996).

    Google Scholar 

  27. Golub, G.H. and VanLoan, C.F., “Matrix Computations,” Johns Hopkins University Press, Baltimore, MD, Second Edition (1989).

    Google Scholar 

  28. Cuthill, E. and McKee, J., “Reducing the Bandwidth of Sparse Symmetric Matrices,” Proc. 24thNat’l. Conf. Assoc. Comput. Mach., ACM Publ., pp.157–172 (1969).

    Google Scholar 

  29. Crane, H.L., Jr., Gibbs, N.E., Poole, Jr., W.G., and Stockmeyer, P.K., “Algorithm 508: Matrix Bandwidth and Profile Reduction,” ACM Trans, on Math. Software, 2, pp.375–377 (1976).

    Article  Google Scholar 

  30. Lewis, J.G., Peyton, B.W. and Pothen, A., “A Fast Algorithm for Reordering Sparse Matrices for Parallel Factorization,” SIAM J. Sci. Statist. Comput., 6, pp.1146–1173 (1989).

    MathSciNet  Google Scholar 

  31. Liu, J.W.H., “Reordering Sparse Matrices for Parallel Elimination,” Tech. Report 87-01, Computer Science, York University, North York, Ontario, Canada (1987).

    Google Scholar 

  32. Pothen, A., Simon, H.D. and Liou, K-P., “Partitioning Sparse Matrice with Eigenvectors of Graphic,” Siam J. Matrix, Vol.11, No.l, pp.430–452 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  33. George, J.A., “Nested Dissection of a Regular Finite Element Mesh,” Siam J. Numer. Anal., 15,pp.l053–1069(1978).

    Google Scholar 

  34. Gilbert, J.R. and Zmijewski, E., “A Parallel Graph Partitioning Algorithm for a Message Passing Multiprocessor,” Inter. J. Parallel Programming, 16, pp.427–449 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  35. Leiserson, C.E. and Lewis, J.G., “Orderings for Parallel Sparse Symmetrix Factorization,” Third SIAM Conference on Parallel Processing for Scientific Computing (1987).

    Google Scholar 

  36. Simon, H.D., Vu, P. and Yang, C., “Performance of a Supernodal General Sparse Solver on the Cray-YMP: 1.68 GFLOPS with Autotasking,” Applied Mathematics Technical Report (SCA-TR-117), Boeing Computer Service, Scientific Computing and Analysis Division, G-8910, M/S 7L-21, P.O. Box 24346, Seattle, Washington, 98124-0346, USA.

    Google Scholar 

  37. Wang, S.M., Chang, T.Y.P. and Tong, P., “Nonlinear Deformation Responses of Rubber Components by Finite Element Analysis,” Computational Mechanics ’95: Theory and Applications Proceedings of the International Conference on Computational Engineering Science, July 30-August 3, 1995, Hawaii, USA (Volume 2, pp.3135–3140).

    Google Scholar 

  38. Chang, T.Y.P., Saleeb, A.F. and Li, G., “Large Strain Analysis of Rubber-like Materials Based on a Perturbed Lagrangian Variational Principal,” J. Comput. Mech., Vol.8, pp.221–233, (1991).

    Article  MATH  Google Scholar 

  39. Gunderson, R.H., “Fatigue Life of TLP Flexelements,” 24th Annual OTC Conference, Houston, Texas, May 4-7, 1992.

    Google Scholar 

  40. Storaasli, O.O., NASA Langley Research Center, Hampton, VA (Private Communication).

    Google Scholar 

  41. Ng, E. and Peyton, B.W., “Block Sparse Choleski Algorithm On Advanced Uniprocessor Computer,” SIAM J. of Sci. Comput., Volume 14, pp. 1034–1056, 1993.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nguyen, D.T. (2002). Sparse Equation Solver with Unrolling Strategies. In: Parallel-Vector Equation Solvers for Finite Element Engineering Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1337-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1337-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5504-5

  • Online ISBN: 978-1-4615-1337-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics