Vagal Stimulation for Intractable Seizures

  • Adrian Upton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 497)


At the present time, the conventional management of seizures includes a trial of multiple medications, followed by consideration of surgical ablation of part of the brain. Since seizures are related to paroxysmal depolarization shifts, more specific therapies are possible. These include the use of electrical stimulation to the brain.


Vagus Nerve Vagal Stimulation Partial Seizure Seizure Frequency Maximal Electroshock Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben Menachem, E., Manon-Espaillat, R., Ristanovic, R., Wilder, B.J., Stefan, H., Mirza, W, Tarver, W.B., and Wernicke, J.F. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia 35 (1994) 614–624.CrossRefGoogle Scholar
  2. 2.
    Chase, M.H., Nakamura, Y., Clemente, C.D., and Sterman, M.B. Afferent vagal stimulation: Neurographic correlates of induced EEG synchronisation and desynchronisation. Brain Res. 5 (1967) 236–249.PubMedCrossRefGoogle Scholar
  3. 3.
    Chase, M.H. and Nakamura, Y. Cortical and subcortical EEG patterns of response to afferent abdominal vagal stimulation: Neurographic correlates. Physiol. Behay. 3 (1968) 605–610.CrossRefGoogle Scholar
  4. 4.
    Clarke, B., Upton, A.R.M., Kamath, M., Griffin, H., Fitzpatrick, D., and Denardis, M. Vagus nerve stimulation reduces seizure frequencies in man. American EEG Society Annual Meeting, Chicago, Sept. 1994.Google Scholar
  5. 5.
    Clarke, B., Upton, A.R.M., Kamath, M. et al. Vagus nerve stimulation reduces seizure frequencies in man. Abstract. Submitted to North American Society of Pacing and Electrophysiology, 15`x’ Annual Scientific Sessions, 1994.Google Scholar
  6. 6.
    Clarke, B.M., Upton, A.R.M., and Griffin, H. Cognitive motor function after electrical stimulation of the vagus nerve. PACE 15 (II)(1992b) 1603–1607.CrossRefGoogle Scholar
  7. 7.
    Clarke, B.M., Upton, A.R.M., Kamath, M., and Griffin, H. Electrostimulation effects of the vagus nerve on balance in epilepsy. PACE 15 (II)(1992a) 1614–1630.CrossRefGoogle Scholar
  8. 8.
    Cooper, I.S. and Upton, A.R.M. Use of chronic cerebellar stimulation (CCS) for disorders of disinhibition in man. Lancet 1 (1978) 595–600.PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper, I.S., Upton, A.R.M., and Amin, I. Reversibility of chronic neurological deficits. Some effects of stimulation of the thalamus and internal capsule. Applic. Neurophysiol. 43 (1980) 244–258.Google Scholar
  10. 10.
    Cooper, I.S., Upton, A.R.M., and Amin, I. Chronic cerebellar stimulation (CCS) and deep brain stimulation (DBS) in voluntary movement disorders. Appl. Neurophysiol. 45 (1982) 209–217.PubMedGoogle Scholar
  11. 11.
    Dahanayake, B.W. and Upton, A.R.M. A novel approach for epileptic seizure detection. 7`h IEEE Symposium, Winston, Salem, N.C. June 10–11,1994.Google Scholar
  12. 12.
    Dahanayake, B.W. and Upton, A.R.M. A novel approach to fast learning: smart neural nets. In: Library of Congress IEEE Proceedings, 188–193, 1994.Google Scholar
  13. 13.
    Garnet, E.S., Nahmias, C., Scheffel, A., Firnau, G., and Upton, A.R.M. Regional cerebral blood flow in man manipulated by direct vagal stimulation. PACE 15 (II)(1992) 1579–1582.CrossRefGoogle Scholar
  14. 14.
    Holder, L.K., Wernicke, J.F., and Tarver, W.B. Treatment of refractory partial seizures: preliminary results of a controlled study. PACE 15 (10)(II)(1992) 1557–1571.PubMedCrossRefGoogle Scholar
  15. 15.
    Kamath, M.V, Upton, A.R.M., Talalla, A., and Fallen, E.L. Neurocardiac responses to vagoafferent electrostimulation in humans. PACE 15 (II)(1992) 1581–1587.PubMedCrossRefGoogle Scholar
  16. 16.
    Lockard, J.S. and Congdon, W.C. Effects of vagal stimulation on seizure rate monkey model. Epilepsia 27 (1986) 626.Google Scholar
  17. 17.
    Ramsay, E., Uthman, B.M, Augustinsson, L.E., Upton, A.R., Naritoku, D., Willis, J., Treig, T., Barolat, G., and Wernicke, J.F. Vagus nerve stimulation (VNS) for treatment of partial seizures: 2. Safety, side-effects and tolerability. Epilepsia 35 (3)(1994) 627–636.PubMedCrossRefGoogle Scholar
  18. 18.
    Symonds, C. Sensory stimulation in centrencephalic and focal cortical epilepsy. Electroenceph. Clin. Neurophysiol. 13 (1961) 309.Google Scholar
  19. 19.
    Tougas, G., Hudoba, E, Fitzpatrick, D., Hunt, R.H., and Upton, A.R. Cerebral evoked potential responses following direct vagal and oesophageal electrical stimulation in humans. Am. J. Physiol. 264 (1993) 486–491.Google Scholar
  20. 20.
    Upton, A.R.M., Tougas, G., Talalla, A., White, A., Hudoba, P., Fitzpatrick, D., Clarke, B., and Hunt, R. Neurophysiological effects of left vagal stimulation in man. PACE 14 (1)(1991) 70–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Upton, A.R.M. Neurophysiological mechanisms in modification of seizures. In: I.S. Cooper (Ed.) Cerebellar Stimulation in Man, Raven Press, New York (1978) pp. 39–57.Google Scholar
  22. 22.
    Upton, A.R.M., Amin, I, Garnett, S., Springman, M., Nahmias, C., and Cooper, I.S. Evoked metabolic responses in the limbic-striate system produced by stimulation of anterior thalamic nucleus in man. PACE 10 (1987) 217–255.PubMedCrossRefGoogle Scholar
  23. 23.
    Upton, A.R.M. and White, A. Autonomic stimulation. PACE 14 (1991) 50–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Woodbury, J.W. and Woodbury, D.M. Vagal stimulation reduces the severity of maximal electroshock seizures in intact rats: Use of a cuff electrode for stimulating and recording. PACE 14 (1991) 94–107.PubMedCrossRefGoogle Scholar
  25. 25.
    Zabara, J. Time course of seizure control to brief repetitive stimuli. Epilepsia 26 (1985) 518.Google Scholar
  26. 26.
    Zanchetti, A., Wang, S.C., and Moruzzi, G. The effect of vagal afferent stimulation on the EEG pattern of the cat. Electroenceph. Am. Neurophysiol. 4 (1952) 357–361.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Adrian Upton
    • 1
  1. 1.Station “A”HamiltonCanada

Personalised recommendations