Advertisement

Effects of Uncontrolled Seizures

Neural Changes in Animal Models
  • Carl E. Stafstrom
  • Gregory L. Holmes
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 497)

Abstract

Children with epilepsy are at significant risk for a variety of problems involving cognition and behavior. The distribution of IQ scores is skewed toward lower values43,77 and the number of children requiring special education services varies from 10 to 33 per cent.77,78,79 Several authors have observed that seizures beginning in early childhood are associated with a higher risk of intellectual impairment than seizures beginning in late childhood or in the teenage years.36,54,55 Behavioral and psychiatric disorders in children with epilepsy are also higher than in the general population, with surveys demonstrating that the prevalence of psychiatric disease is two to four times greater among children with epilepsy than in controls.77,78,79 While the cognitive and behavioral abnormalities may often be explained by the etiological factors responsible for the epilepsy, there is evidence that some children with poorly controlled epilepsy have progressive declines of IQ on serial intelligence tests60,65,170 and behavioral and psychiatric deterioration over time. Whether this decline is secondary to antiepileptic medications, progression of the underlying encephalopathy responsible for the seizures, or the seizures per se, is not certain.

Keywords

NMDA Receptor Status Epilepticus Temporal Lobe Epilepsy Excitatory Amino Acid Mossy Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, WC. and Mason, S.E. Effects of the NMDA receptor/channel antagonists CPP and MK801 on hippocampal field potentials and long-term potentiation in anesthetized ratsBrain Res462 (1988) 40–46.PubMedGoogle Scholar
  2. 2.
    Aicardi, J. and Chevrie, J.J. Consequences of status epilepticus in infants and children. In: A.V. Delgado-Escueta, C.G. Wasterlain, D.M. Treiman, and R.J. Porter (Eds.):Advances in Neurology. Vol. 34. Status Epilepticus: Mechanisms of Brain Damage and TreatmentRaven Press, New York (1983) pp. 115–125.Google Scholar
  3. 3.
    Albala, B.J., MoshéS.L., and Okada, R. Kainic-acid-induced seizures: A developmental studyDev. Brain Res.13 (1984) 139–148.Google Scholar
  4. 4.
    Annegers, J.F., Hauser, W.A., Elveback, L.R., and Kurland, L.T. The risk of epilepsy following febrile convulsionsNeurology29 (1979) 297–303.PubMedGoogle Scholar
  5. 5.
    Artola, A. and Singer, W Long-term potentiation and NMDA receptors in rat visual cortexNature330 (1987) 649–652.PubMedGoogle Scholar
  6. 6.
    Aruffo, C., Ferszt, R., Hildebrandt, A.G., and Cervos-Navarro, J. In vitro neuronal plasticity triggered by subtoxic doses of monosodium glutamateProg. Clin. Biot. Res.253 (1987) 229–237.Google Scholar
  7. 7.
    Babb, T. and Brown, W Pathological findings in epilepsy. In: J. Engel (Ed.)Surgical Treatment in EpilepsyRaven Press, New York (1987) pp. 511–540.Google Scholar
  8. 8.
    Babb, T.L. and Brown, W.J. Neuronal, dendritic and vascular profiles of human temporal lobe epilepsy correlated with cellular physiology “in vivo”Adv. Neurol.44 (1986) 949–966.PubMedGoogle Scholar
  9. 9.
    Babb, T.L., Kupfer, W.R., Pretorius, J.K., Crandall, PH., and Levesque, P.F. Synaptic reorganization by mossy fibers in human epileptic fascia dentataNeurosci.42 (1991) 351–363.Google Scholar
  10. 10.
    Babb, T.L., Pretorius, J.K., Kupfer, W.R., and Crandall, P.H. Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus, J. Neurosci., 9 (1989) 2562–2574.PubMedGoogle Scholar
  11. 11.
    Barca, M.A. and Toledano, A. Histochemical electron microscopic study of the enzyme glutamate dehydrogenase (GD) in post-natal developing cerebellumCell Mol. Biot.28 (1982) 187–195.Google Scholar
  12. 12.
    Bashir, Z.I., Bortolotto, Z.A., Davies, C.H., Berretta, N., Irving, A.J., Seal, A.J., Henley, J.M., Jane, D.E., Watkins, J.C., and Collingridge, G.L. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptorsNature363 (1993) 347–350.PubMedGoogle Scholar
  13. 13.
    Batchelor, A.M., Madge, D.J., and Garthwaite, J. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-purkinje cell pathway in rat cerebellar slicesNeuroscience63 (1994) 911–915.PubMedGoogle Scholar
  14. 14.
    Bear, M.F. and Kirkwood, A. Neocortical long-term potentiationCurr. Opin. Neurobiol.3 (1993) 197–202.PubMedGoogle Scholar
  15. 15.
    Bekenstein, J.W. and Lothman, E.W. An in-vivo study of the ontogeny of long-term potentiation (LTP) in the CA1 region and in the dentate gyrus of the rat hippocampal formationDev. Brain Res.63 (1991) 245–251.Google Scholar
  16. 16.
    Bekenstein, J.W. and Lothman, E.W. A comparison of the ontogeny of excitatory and inhibitory neurotransmission in the CAl region and dentate gyrus of the rat hippocampal formationDev. Brain Res.63 (1991) 237–243.Google Scholar
  17. 17.
    Bekenstein, J.W. and Lothman, E.W. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsyScience259 (1993) 97–100.PubMedGoogle Scholar
  18. 18.
    Ben-Ari, Y Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsyNeuroscience14 (1985) 375–403.PubMedGoogle Scholar
  19. 19.
    Ben-Ari, Y, Cherubini, E., and Krnjevic K. Changes in voltage dependence of NMDA currents during developmentNeurosci. Lett.94 (1988) 88–92.PubMedGoogle Scholar
  20. 20.
    Ben-Ari, Y, Tremblay, E., Ottersen, O.P, and Meldrum, B.S. The role of epileptic activity in hippocampal and “remote” cerebral lesions induced by kainic acidBrain Res.191 (1980) 79–97.PubMedGoogle Scholar
  21. 21.
    Bliss, T.V. and Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampusNature362 (1993) 31–39.Google Scholar
  22. 22.
    Bode-Greuel, K.M. and Singer, W. The development of N-methyl-D-aspartate receptors in cat visual cortexDev. Brain Res.46 (1989) 197–204.Google Scholar
  23. 23.
    Bordi, F. and Ugolini, A. Group I metabotropic glutamate receptors: implications for brain diseasesProgr. Neurobiol59 (1999) 55–79.Google Scholar
  24. 24.
    Bortolotto, Z.A., Bashir, Z.I., Davies, C.M., and Collingridge, G.L. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiationNature368 (1994) 740–743.PubMedGoogle Scholar
  25. 25.
    Brooks, W.J., Petit, T.L., and LeBoutillier, J.C. Neural development following NMDA administration in the rat: an electron microscopic examination of the occipital neocortex layer IBrain Res. Bull.33 (1994) 621–624.PubMedGoogle Scholar
  26. 26.
    Brooks, W.J., Petit, T.L., LeBoutillier, J.C., and Lo, R. Rapid alteration of synaptic number and post-synaptic thickening length by NMDA: an electron microscopic study in the occipital cortex of postnatal ratsSynapse8 (1991) 41–48.PubMedGoogle Scholar
  27. 27.
    Burazin, T.C. and Gundlach, A.L. Rapid and transient increases in cellular immediate early gene and neuropeptide mRNAs in cortical and limbic areas after amygdaloid kindling seizures in the ratEpilepsy Res.26 (1996) 281–293.PubMedGoogle Scholar
  28. 28.
    Campochiaro, P. and Coyle, J.T. Ontogenic development of kainate neurotoxicity: Correlates with glutamatergic innervationProc. Natl. Acad. Sci. USA75 (1978) 2025–2029.PubMedGoogle Scholar
  29. 29.
    Cavalheiro, E.A., Czuzwar, S.J., Kleinrok, Z., Turski, L., and Turski, W.A. Intracerebral cholinomimetics produce seizure-related brain damage in ratsBrit. J. Pharmacol.79 (1983) 284PGoogle Scholar
  30. 30.
    Cavalheiro, E.A., Silva, D.F., Turski, W.A., Calderazzo-Filho, L.S., Bortolotto, Z.A., and Turski, L. The susceptibility of rats to pilocarpine-induced seizures is age-dependentDev. Brain Res.37 (1987) 43–58.Google Scholar
  31. 31.
    Cavanagh, J.B. and Meyer, A. Aetiological aspects of Ammon’s horn sclerosis associated with temporal lobe epilepsyBrit. Med. J.2 (1956) 1403–1407.PubMedGoogle Scholar
  32. 32.
    Chahal, H., D’Souza, S.W., Barson, A.J., and Slater, P. Modulation by magnesium of N-methyl-Daspartate receptors in developing human brainArch. Dis. Child Fetal Neonatal Ed.78 (1998) F116–F120.PubMedGoogle Scholar
  33. 33.
    Chapman, A.G. Glutamate receptors in epilepsyProgr. Brain Res.116 (1998) 371–383.Google Scholar
  34. 34.
    Chapman, A.G., Smith, S.E., and Meldrum, B.S. The anticonvulsant effect of the non-NMDA antagonists, NBQX and GYKI 52466, in miceEpilepsy Res.9 (1991) 92–96.PubMedGoogle Scholar
  35. 35.
    Chapman, PF., Kairiss, WW, Keenan, C.L., and Brown, T.H. Long-term synaptic potentiation in the amygdalaSynapse6 (1990) 271–278.PubMedGoogle Scholar
  36. 36.
    Chevrie, J.J. and Aicardi, J. Childhood epileptic encephalopathy with slow spike-wave. A statistical study of 80 casesEpilepsia13 (1972) 259–271.PubMedGoogle Scholar
  37. 37.
    Chiamulera, C., Costa, S., and Reggiani, A. Effect of NMDA- and strychnine-insensitive glycine site antagonists on NMDA-mediated convulsions and learningPsychopharmacology102 (1990) 551–552.PubMedGoogle Scholar
  38. 38.
    Choi, D.W. Ionic dependence of glutamate neurotoxicity, J.Neurosci.7 (1987) 369–379.PubMedGoogle Scholar
  39. 39.
    Choi, D.W. Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damageTrends Neurosci.11 (1988) 465–469.PubMedGoogle Scholar
  40. 40.
    Choi, D.W. Glutamate toxicity and diseases of the nervous systemNeuron.1 (1988) 623–624.PubMedGoogle Scholar
  41. 41.
    Colley, P.A. and Routtenberg, A. Long-term potentiation as synaptic dialogueBrain Res. Rev.18 (1993) 115–122.PubMedGoogle Scholar
  42. 42.
    Collingridge, G.L. and Lester, R.J. Excitatory amino acid receptors in the vertebrate central nervous systemPharmacol. Rev.41 (1989) 143–210.PubMedGoogle Scholar
  43. 43.
    Collins, A.L. and Lennox, WG. The intelligence of 300 private epileptic patientsProc. Assoc. Res. Nerv. Ment. Dis.26 (1947) 586–603.Google Scholar
  44. 44.
    Constantine-Paton, M., Cline, H.T., and Debski, E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathwaysAnn. Rev. Neurosci.13 (1990) 129–154.PubMedGoogle Scholar
  45. 45.
    Corsellis, J.A.N. and Bruton, C.J. Neuropathology of status epilepticus in humans. In: A.V. Delgado-Escueta, C.G. Wasterlain, D.M. Treiman, and R.J. Porter (Eds.):Status EpilepticusRaven Press, New York (1983) pp. 129–139.Google Scholar
  46. 46.
    Cotman, C.W., Bridges, R.J., Taube, J.S., Clarke, A.S., Geddes, J.W., and Monanhan, D.T. The role of the NMDA receptor in central nervous system plasticity and pathology, J.NIH Res.1989:6574.Google Scholar
  47. 47.
    Cotman, C.W. and Monaghan, D.T. Anatomical organization of excitatory amino acid receptors and their properties. In: R. Schwarcz and Y. Ben-Ari (Eds.):Excitatory Amino Acids and EpilepsyPlenum Press, New York (1986) pp. 237–252.Google Scholar
  48. 48.
    Crépel, V., Aniksztejn, L., Ben-Ari, Y, and Hammond, C. Glutamate metabotropic receptors increase a Ca’-activated nonspecific cationic current in CAI hippocampal neurons, J.Neurophysiol72 (1994) 1561–1569.PubMedGoogle Scholar
  49. 49.
    Cronin, J. and Dudek, F.E. Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in ratsBrain Res.474 (1988) 181–184.PubMedGoogle Scholar
  50. 50.
    Danscher, G. Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electron microscopyHistochem.71 (1981) 1–16.Google Scholar
  51. 51.
    Davis, S., Butcher, S.P., and Morris, R.G.M. The NMDA receptor antagonist D-2-amino-5phophonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro, J.Neurosci.12 (1992) 21–34.PubMedGoogle Scholar
  52. 52.
    Daw, N.W, Stein, P.S.G., and Fox, K. The role of NMDA receptors in information processingAnn. Rev. Neurosci.16 (1993) 207–222.PubMedGoogle Scholar
  53. 53.
    Dietrich, D., Kral, T., Clusmann, H., Friedl, M., and Schramm, J. Reduced function of L-AP4sensitive metabotropic glutamate receptors in human epileptic sclerotic hippocampusEur..1 Neurosci. 11(1999) 1109–1113.PubMedGoogle Scholar
  54. 54.
    Dikmen, S., Matthews, C.G., and Harley, J.P. Effect of early versus late onset of major motor epilepsy upon cognitive-intellectual performanceEpilepsia16 (1975) 73–81.PubMedGoogle Scholar
  55. 55.
    Dikmen, S., Matthews, C.G., and Harley, J.P. Effect of early versus late onset of major motor epilepsy upon cognitive-intellectual performance: Further considerationsEpilepsia18 (1977) 31–36.PubMedGoogle Scholar
  56. 56.
    Dodd, P.R. and Bradford, H.F. Release of amino acids from the maturing cobalt-induced epileptic focusBrain Res.111 (1976) 377–388.PubMedGoogle Scholar
  57. 57.
    Dudek, F.E. and Spitz, M. Hypothetical mechanisms for the cellular and neurophysiologie basis of secondary epileptogenesis: proposed role of synaptic reorganizationJ. Clin. Neurophysiol.14 (1997) 90–101.PubMedGoogle Scholar
  58. 58.
    Falconer, M.A., Serafetinides, E.A., and Corsellis, J.A.N. Etiology and pathogenesis of temporal lobe epilepsyArch. Neurol.10 (1964) 233–248.PubMedGoogle Scholar
  59. 59.
    Fariello, G.G., Golden, G.T., Smith, G.G., and Reyes, P.F. Potentiation of kainic acid epileptogenicity and sparing from neuronal damage by an NMDA receptor antagonistEpilepsy Res.3 (1989) 206–213.PubMedGoogle Scholar
  60. 60.
    Farwell, J.R., Dodrill, C.B., and Batzel, L.W. Neuropsychological abilities of children with epilepsyEpilepsia26(5) (1985) 395–400.PubMedGoogle Scholar
  61. 61.
    Franck, J.E. and Schwartzkroin, P.A. Immature rabbit hippocampus is damaged by systemic but not intraventricular kainic acidDei Brain Res.13 (1984) 219–227.Google Scholar
  62. 62.
    Frandsen, A., Drejer, J., and Schousboe, A. Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors, JNeurochem.53 (1989) 297–299.PubMedGoogle Scholar
  63. 63.
    French, J.A., Williamson, PD., Thadani, V.M., Darcey, T.M., Mattson, R.H., Spencer, S.S., and Spencer, D.D. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examinationAnn. Neurol.34 (1993) 774–780.PubMedGoogle Scholar
  64. 64.
    Fujikawa, D.G., Dwyer, B.E., and Wasterlain, C.G. Preferential blood flow to brainstem during generalized seizures in the newborn marmoset monkeyBrain Res.397 (1986) 61–72.PubMedGoogle Scholar
  65. 65.
    Funakoshi, A., Morikawa, T., Muramatsu, R., Yagi, K., and Seino, M. A propsective WISC-R study in children with epilepsyJpn. J Psychiatry Neurol.42(3) (1988) 562–564.PubMedGoogle Scholar
  66. 66.
    Gall, C.M. Seizure-induced changes in neurotrophin expression: implications for epilepsyExp. Neurol.124, (1993) 150–166.PubMedGoogle Scholar
  67. 67.
    Glaum, S.R. and Miller, R.J. Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tractJ. Neurosci.12 (1992) 2251–2258.PubMedGoogle Scholar
  68. 68.
    Golarai, G., Cavazos, J., and Sutula, T. Activation of dentate gyrus by pentylenetetrazol evoked seizures induces mossy fiber synaptic reorganizationBrain Res.593 (1992) 257–264.PubMedGoogle Scholar
  69. 69.
    Gorter, J.A., Titulaer, M., Bos, N.P.A., and Huisman, E. Chronic neonatal MK-801 administration leads to a long-lasting increase in seizure sensitivity during the early stages of hippocampal kindlingNeurosci. Lett.134 (1991) 29–32.PubMedGoogle Scholar
  70. 70.
    Grattan-Smith, J.D., Harvey, A.S., Desmond, P.M., and Chow, C.W. Hippocampal sclerosis in children with intractable temporal lobe epilepsy: detection with MR imagingAJR161 (1993) 1045–1048.PubMedGoogle Scholar
  71. 71.
    Gustafsson, B., Wigstrom, H., Abraham, WC., and Huang, Y.Y. Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials, J.Neurosci.7 (1987) 774–780.PubMedGoogle Scholar
  72. 72.
    Hammon, B. and Heinemann, U. Developmental changes in neuronal sensitivity to excitatory amino acids in area CAl of the rat hippocampusDev. Brain Res.38 (1988) 286–290.Google Scholar
  73. 73.
    Harrigan, T., Peredery, O., and Persinger, M.A. Failure to acquire an inhibitory task following seizure-induced brain damagePercep. Motor Skills70 (1990) 268–270.Google Scholar
  74. 74.
    Harris, K.M. and Teyler, T.J. Developmental onset of long-term potentiation in area CAl of the rat hippocampus, T.Physiol.346 (1984) 27–48.Google Scholar
  75. 75.
    Hattori, H. and Wasterlain, C.G. Excitatory amino acids in the developing brain: ontogeny, plasticity, and excitotoxicityPediatr. Neurol.60 (1990) 219–228.Google Scholar
  76. 76.
    Hirsch, E., Baram, T.Z., and Snead, O.C., HI. Ontogenic study of lithium-pilocarpine-induced status epilepticus in ratsBrain Res.583 (1992) 120–126.PubMedGoogle Scholar
  77. 77.
    Holmes, G.L.Diagnosis and Management of Seizures in Children. WB. Saunders Company, Philadelphia, (1987) pp. 1–293.Google Scholar
  78. 78.
    Holmes, G.L. The long-term effects of seizures on the developing brain: clinical and laboratory issuesBrain Dev.13 (1991) 393–409.PubMedGoogle Scholar
  79. 79.
    Holmes, G.L. Do seizures cause brain damage?Epilepsia32 (Suppl. 5) (1991) S14–S28.PubMedGoogle Scholar
  80. 80.
    Holmes, G.L. and Ben-Ari, Y. Seizures in the developing brain: perhaps not so benign after allNeuron21 (1998) 1231–1234.PubMedGoogle Scholar
  81. 81.
    Holmes, G.L., Chronopoulos, A., Stafstrom, C.E., Mikati, M.A., Thurber, S.J., Hyde, EA., and Thompson, J.L. Effects of kindling on subsequent learning, memory, behavior, and seizure susceptibilityDevelop. Brain Res.73 (1993) 71–77.Google Scholar
  82. 82.
    Holmes, G.L., Gaiarsa, J.L., Chevassus-Au-Louis, N., and Ben-Ari, Y Consequences of neonatal seizures in the rat: morphological and behavioral effectsAnn. Neurol.44 (1998) 845–857.PubMedGoogle Scholar
  83. 83.
    Holmes, G.L., Sarkisian, M., Ben-Ari, Y, and Chevassus-Au-Louis, N. Effects of recurrent seizures in the developing brain. In: A. Nehlig, J. Motte, S.L. Moshe, and P. Plouin (Eds.):Childhood Epilepsies and Brain DevelopmentJohn Libbey, London (1999) pp. 263–276.Google Scholar
  84. 84.
    Holmes, G.L., Sarkisian, M., Ben-Ari, Y, and Chevassus-Au-Louis, N. Mossy fiber sprouting after recurrent seizures during early development in ratsJ Comp. Neurol.404 (1999) 437–553.Google Scholar
  85. 85.
    Holmes, G.L. and Thompson, J.L. Effects of kainic acid on seizure susceptibility in the developing brainBrain Res.467 (1988) 51–59.PubMedGoogle Scholar
  86. 86.
    Holmes, G.L., Thompson, J.L., Marchi, T., and Feldman, D.S. Behavioral effects of kainic acid administration on the immature brainEpilepsia29 (1988) 721–730.PubMedGoogle Scholar
  87. 87.
    Holmes, G.L., Thompson, J.L., Marchi, T.A., Gabriel, P.S., Hogan, M.A., Carl, F.G., and Feldman, D.S. Effects of seizures on learning, memory, and behavior in the genetically epilepsy-prone ratAnn. Neurol.29 (1990) 24–32.Google Scholar
  88. 88.
    Holmes, G.L., Thurber, S.T., Liu, Z., Stafstrom, C.E., Gatt, A.M., and Mikati, M.A. Effects of quisqualic acid and glutamate on subsequent learning, emotionality, and seizure susceptibility in the immature and mature animalBrain Res.623 (1993) 325–328.PubMedGoogle Scholar
  89. 89.
    Hori, N., Ffrench-Mullen, J.M.H., and Carpenter, D.O. Kainic acid response and toxicity show pronounced Ca’ dependenceBrain Res.358 (1985) 380–384.PubMedGoogle Scholar
  90. 90.
    Insel, T.R., Miller, L.P., and Gelhard, R.E. The ontogeny of excitatory amino acid receptors in rat forebrain-I. N-Methyl-D-Aspartate and quisqualate receptorsNeuroscience35 (1990) 31–43.PubMedGoogle Scholar
  91. 91.
    Iriki, A., Pavlides, C., Keller, A., and Asanuma, H. Long-term potentiation in the motor cortexScience245 (1989) 1385–1387.PubMedGoogle Scholar
  92. 92.
    Jackson, P.S., Suppes, T., and Harris, K.M. Stereotypical changes in the pattern and duration of longterm potentiation expressed at postnatal days 11 and 15 in the rat hippocampus, J.Physiol.70 (1993) 1412–1419.Google Scholar
  93. 93.
    Jensen, F.E., Alvarado, S., Firkusny, I.R., and Geary, C. NBQX blocks the acute and late epileptogenic effects of perinatal hypoxiaEpilepsia36 (1995) 996–972.Google Scholar
  94. 94.
    Kanter, E.D. and Haberly, L.B. NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitroBrain Res.525 (1990) 175–179.PubMedGoogle Scholar
  95. 95.
    Kelso, S.R. and Brown, T.H. Differential conditioning of associative synaptic enhancement in hippocampal brain slicesScience232 (1986) 85–87.PubMedGoogle Scholar
  96. 96.
    Kiessling, M. and Gass, P. Immediate early gene expression in experimental epilepsyBrain Pathol3 (1993) 381–393.PubMedGoogle Scholar
  97. 97.
    Koh, J.-Y, Goldberg, M.P., Hartley, D.M., and Choi, D.W. Non-NMDA receptor-mediated neurotoxicity in cortical cultureJ Neurosci.7 (1990) 693–705.Google Scholar
  98. 98.
    Kudo, Y and Ogura, A. Glutamate-induced increase in intracellular Ca++ concentration in isolated hippocampal neuronsBrit. J Pharmacol.89 (1986) 191–198.Google Scholar
  99. 99.
    Kvamme, E., Svenneby, G., Torgner, I.A.A., Drejer, J., and Schousboe, A. Postnatal development of glutamate metabolizing enzymes in hippocampus from miceInt. J Development Neurosci.3 (1985) 359–364.Google Scholar
  100. 100.
    Lallement, G., Carpentier, E, Collet, A., Pernot-Marino, I., Baubichon, D., and Blanchet, G. Effects of roman-induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampusBrain Res.563 (1991) 234–240.PubMedGoogle Scholar
  101. 101.
    Lallement, G., Carpentier, P., Collet, A., Pernot-Marino, I., Baubichon, D., Sentenac-Roumanou, H., and Blanchet, G. Involvement of glutamatergic system of amygdala in generalized seizures induced by soman: comparison with the hippocampusComptes Rendus de l’Academie des Sciences313 (1991) 421–426.PubMedGoogle Scholar
  102. 102.
    Lees, G.J. and Leong, W The non-NMDA glutamate antagonist NBQX blocks the local hippocampal toxicity of kainic acid, but not the diffuse extrahippocampal damageNeurosci. Lett.143 (1992) 39–42.PubMedGoogle Scholar
  103. 103.
    Lehmann, A. Alterations in hippocampal extracellular amino acids and purine catabolites during limbic seizures induced by folate injections into the rabbit amygdalaNeuroscience22 (1987) 573–578.PubMedGoogle Scholar
  104. 104.
    Lehmann, A., Hagberg, H., Jacobson, I., and Hamberger, A. Effects of status epilepticus on extracellular amino acids in the hippocmpusBrain Res.359 (1985) 147–151.PubMedGoogle Scholar
  105. 105.
    Leung, L.S., Boon, K.A., Kaibara, T., and Innis, N.K. Radial maze performance following hippocampal kindlingBehm’. Brain Res.40 (1990) 119–129.Google Scholar
  106. 106.
    Leung, L.S. and Shen, B. Hippocampal CA1 evoked response and radial 8-arm maze performance after hippocampal kindlingBrain Res.555 (1991) 353–357.PubMedGoogle Scholar
  107. 107.
    Lewin, A.H., Sun, G., Fudala, L., Navarro, H., Zhou L.M., Popik, P., Faynsteyn, A., and Skolnick, P. Molecular features associated with polyamine modulation of NMDA receptorsJ Med. Chem.41 (1998) 988–995.PubMedGoogle Scholar
  108. 108.
    Lipton, S.A. Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxideTrends Neurosci.16 (1993) 527–532.PubMedGoogle Scholar
  109. 109.
    Lipton, S.A. and Rosenberg, P.A. Excitatory amino acids as a final common pathway for neurologic disordersN Engl. J Med.330 (1994) 613–622.PubMedGoogle Scholar
  110. 110.
    Lipton, S.A., Singel, D.J., and Stamler, J.S. Nitric oxide in the central nervous systemProgr Brain Res.103 (1994) 359–364.Google Scholar
  111. 111.
    Liu, Z., Gatt, A., Mikati, M., and Holmes, G.L. Long-term behavioral deficits following pilocarpine seizures in immature ratsEpilepsy Res.19 (1995) 191–204.Google Scholar
  112. 112.
    Liu, Z., Mikati, M., and Holmes, G.L. Mesial temporal sclerosis: pathogenesis and significancePediatr. Neurol.12 (1995) 5–16.PubMedGoogle Scholar
  113. 113.
    Liu, Z., Stafstrom, C.E., Sarkisian, M., Tandon, P., Yang, Y, Hori, A., and Holmes, G.L. Age-dependent effects of glutamate toxicity in the hippocampusDey Brain Res.97 (1996) 178–184.Google Scholar
  114. 114.
    Liu, Z., Yang, Y., Silveira, D.C., Sarkisian, M.R., Tandon, P., Huang, L.T., Stafstrom, C.E., and Holmes, G.L. Consequences of recurrent seizures during early brain developmentNeuroscience92 (1999) 1443–1454.PubMedGoogle Scholar
  115. 115.
    Lopes da Silva, F.H., Gorter, J.A., and Wadman, W.J. Kindling of the hippocampus induces spatial memory deficits in the ratNeurosci. Lett.63 (1986) 115–120.PubMedGoogle Scholar
  116. 116.
    Lucas, D.R. and Newhouse, J.P. The toxic effects of sodium L-glutamate on the inner layers of the retinaArch. Opthalmol58 (1957) 193–201.Google Scholar
  117. 117.
    MacDonald, J.F., Xiong, X.G., Lu, W.Y., Raouf, R., and Orser, B.A. Modulation of NMDA receptorsProgr Brain Res.116 (1998) 191–208.Google Scholar
  118. 118.
    Malinow, R. and Miller, J.P. Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiationNature321 (1986) 529–530.Google Scholar
  119. 119.
    Mares, P. Excitatory amino acids and epileptogenesis during ontogenesis. In: A. Nehlig, J. Motte, S.L. Moshe, and P. Plouin (Eds.):Childhood Epilepsies and Brain DevelopmentJohn Libbey, London, (1999) pp. 157–160.Google Scholar
  120. 120.
    Mathern, G.W, Leite, J.P., Pretorius, J.K., Quinn, B., Peacock, W.J., and Babb, T.L. Children with severe epilepsy: evidence of hippocampal neuron losses and aberrant mossy fiber sprouting during postnatal granule cell migration and differentiationDey. Brain Res.78 (1994) 70–80.Google Scholar
  121. 121.
    Mathern, G.W., Leite, J.P., Pretorius, J.K., Quinn, B., Peacock, W.J., and Babb, T.L. Severe seizures in young children are associated with hippocampal neuronal losses and aberrant mossy fiber sprouting during fascia dentata postnatal developmentEpilepsy Res. Supplement12 (1996) 33–43.Google Scholar
  122. 122.
    McDonald, J.W., Fix, A.S., Tizzano, J.P., and Schoepp, D.D. Seizures and brain injury in neonatal rats induced by 1S,3R-ACPD, a metabotropic glutamate receptor agonist, J.Neurosci.13 (1993) 4445–4455.PubMedGoogle Scholar
  123. 123.
    McDonald, J.W. and Johnston, M.V. Pharmacology of N-methyl-D-aspartate-induced brain injury in an in vivo perinatal rat modelSynapse6 (1990) 179–188.PubMedGoogle Scholar
  124. 124.
    McDonald, J.W. and Johnston, M.V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system developmentBrain Res. Rev.15 (1990) 41–70.PubMedGoogle Scholar
  125. 125.
    McDonald, J.W, Silverstein, F.S., Cardona, D., Hudson, C., Chen, R., and Johnston, M.V. Systemic administration of MK-801 protects against N-methy-D-aspartate-and quisqualate-mediated neurotoxicity in perinatal ratsNeuroscience36 (1990) 589–599.PubMedGoogle Scholar
  126. 126.
    McDonald, J.W., Silverstein, ES., and Johnston, M.V. Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous systemBrain Res.459 (1988) 200–203.PubMedGoogle Scholar
  127. 127.
    McDonald, J.W., Silverstein, F.S., and Johnston, M.V. MK-801 pretreatment enhances N-methyl-Daspartate-mediated brain injury and increases brain N-methyl-D-aspartate recognition site binding in ratsNeuroscience38 (1990) 103–113.PubMedGoogle Scholar
  128. 128.
    McDonald, J.W, Trescher, W.H., and Johnston, M.V. The selective ionotropic-type quisqualate receptor agonist AMPA is a potent neurotoxin in immature rat brainBrain Res.526 (1990) 165–168.PubMedGoogle Scholar
  129. 129.
    McDonald, J.W., Trescher, WH., and Johnston, M.V. Susceptibility of brain to AMPA induced excito-toxicity transiently peaks during early postnatal developmentBrain Res.583 (1992) 54–70.PubMedGoogle Scholar
  130. 130.
    Meldrum, B. Excitatory amino acid transmitters in epilepsyEpilepsia32 (1991) 51–53.Google Scholar
  131. 131.
    Meldrum, B. and Garthwaite, J. Excitatory amino acid neurotoxicity and neurodegenerative diseaseTrends Pharmacol. Sci. 11(1990) 379–387.PubMedGoogle Scholar
  132. 132.
    Meldrum, B.S. and Brierley, J.B. Prolonged epileptic seizures in primates: Ischaemic cell change and its relation to ictal physiological eventsArch. Neurol.28 (1973) 10–17.PubMedGoogle Scholar
  133. 133.
    Meldrum, B.S. and Horton, R.W. Physiology of status epilepticus in primatesArch. Neurol.28 (1973) 1–9.PubMedGoogle Scholar
  134. 134.
    Meldrum, B.S., Vigouroux, R.A., and Brierley, J.B. Systemic factors and epileptic brain damage. Prolonged seizures in paralysed artificially ventilated baboonsArch. Neurol.29 (1973) 82–87.PubMedGoogle Scholar
  135. 135.
    Milian, M.H., Chapman, A.G., and Meldrum, B.S. Extracellular amino acid levels in hippocampus during pilocarpine-induced seizuresEpilepsy Res.14 (1993) 139–148.Google Scholar
  136. 136.
    Miller, L.P., Johnson, A.E., Gelhard, R.E., and Insel, T.R. The ontogeny of excitatory amino acid receptors in the rat forebrain-II.Kainic acid receptorsNeuroscience35 (1990) 45–51.Google Scholar
  137. 137.
    Minamoto, Y, Itano, T., Tokuda, M., Matsui, H., Janjua, N.A., Hosokawa, K., Okada, Y, Murakami, T.H., Negi, T., and Hatase, O. In vivo microdialysis of amino acid neurotransmitters in the hippocampus in amygdaloid kindled ratBrain Res.573 (1992) 345–348.PubMedGoogle Scholar
  138. 138.
    Minc-Golomb, D., Levy, Y., Kleinberger, N., and Schramm, M. D-[3H]Aspartate release from hippocampus slices studied in a multiwell system: controlling factors and postnatal development of releaseBrain Res.402 (1987) 255–263.PubMedGoogle Scholar
  139. 139.
    Monaghan, D.T., Bridges, R.J., and Cotman, C.W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous systemAnn. Rev. Pharmacol Toxicol.29 (1989) 365–402.Google Scholar
  140. 140.
    Monaghan, D.T. and Cotman, C.W. Distribution on N-methyl-D-aspartate sensitive L-[3H]glutamate binding sites in rat brainJ Neurosci.5 (1985) 2909–2919.PubMedGoogle Scholar
  141. 141.
    Monaghan, D.T., Yao, D., and Cotman, C.W. L-[3H1 glutamate binds to kainate-, NMDA- and AMPAsensitive binding sites: an autoradiographic analysisBrain Res.340 (1985) 378–383.PubMedGoogle Scholar
  142. 142.
    Moncada, C., Arvin, B., Le Peillet, E., and Meldrum, B.S. Non-NMDA antagonists protect against kainate more than AMPA toxicity in the rat hippocampusNeurosci. Lett.133 (1991) 287–290.PubMedGoogle Scholar
  143. 143.
    Morris, R.G.M., Anderson, E., Lynch, G.S., and Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5Nature319 (1986) 774–776.PubMedGoogle Scholar
  144. 144.
    Moshé, S.L. Epileptogenesis and the immature brainEpilepsia28 (Suppl. 1) (1987) S3–S15.PubMedGoogle Scholar
  145. 145.
    Muller, D., Oliver, M., and Lynch, G. Developmental changes in synaptic properties in hippocampus of neonatal ratsDev. Brain Res.49 (1989) 105–114.Google Scholar
  146. 146.
    Nadler, J.V. Kainic acid as a tool for the study of temporal lobe epilepsyLife Sci.29 (1981) 2031–2042.PubMedGoogle Scholar
  147. 147.
    Nadler, J.V., Perry, B.W, and Cotman, C.W. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cellsNature271 (1978) 676–677.PubMedGoogle Scholar
  148. 148.
    Nahm, W.K. and Noebels, J.L. Nonobligate role of early or sustained expression of immediate early gene proteins c-fos, c-jun, and Zif/286 in hippocampal mossy fiber sproutingJ Neurosci.18 (1998) 9245–9255.PubMedGoogle Scholar
  149. 149.
    Nakanishi, S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticityNeuron.13 (1994) 1033–1037.Google Scholar
  150. 150.
    Neill, J.C., Liu, Z., Gatt, A., Mikati, M., and Holmes, G.L. Pilocarpine-induced seizures impair acquisition rate of auditory discrimination using location cuesSoc. Neurosci. Abstr.19 (1993) 394.Google Scholar
  151. 151.
    Neill, J.C., Liu, Z., Sarkisian, M., Tandon, P, Yang, Y, Stafstrom, C.E., and Holmes, G.L. Recurrent seizures in immature rats: effect on auditory and visual discriminationDev. Brain Res.95 (1996) 283–292.Google Scholar
  152. 152.
    Obenaus, A., Esclapez, M., and Houser, C.R. Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizuresJ. Neurosci.13 (1993) 4470–4485.PubMedGoogle Scholar
  153. 153.
    Okada, Y and Miyamoto, T. Formation of long-term potentiation in superior colliculus slices from the guinea pigNeurosci. Lett.96 (1989) 108–113.PubMedGoogle Scholar
  154. 154.
    Okazaki, M.M., Evenson, D.A., and Nadler, J.V. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin,.1Comp. Neurol.352 (1995) 515–523.Google Scholar
  155. 155.
    Olney, J.W, Collins, R.C., and Sloviter, R.S. Excitotoxic mechanisms of epileptic brain damageAdv. Neurol.44 (1986) 857–877.PubMedGoogle Scholar
  156. 156.
    Olney, J.W., De Gubareff, T., and Labruyere, J. Seizure-related brain damage induced by cholinergic agentsNature301 (1983) 520–522.PubMedGoogle Scholar
  157. 157.
    Olney, J.W, De Gubareff, T., and Sloviter, R.S. “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. II. Ultrastructural analysis of acute hippocampal pathologyBrain Res. Bull. 10(1983) 699–712.PubMedGoogle Scholar
  158. 158.
    Olton, D.S., Becker, J.T., and Handelman, G.E. Hippocampus, space, and memoryBehay. Brain Sci.2 (1979) 313–322.Google Scholar
  159. 159.
    Orrenius, S., McConkey, D., Belloma, G., and Nicoterm, P. Role of Ca[2’] in toxic killingTrends Pharmacol. Sci.10 (1989) 281–285.PubMedGoogle Scholar
  160. 160.
    Ounsted, C., Lindsay, J., and Norman, R.Biological Factors in Temporal Lobe Epilepsy. Clinics in Developmental Medicineno. 22., The Spastics Society Medical Education and Information Unit, in association with William Heinemanh Medical Books, Ltd., London (1966) pp. 1–131.Google Scholar
  161. 161.
    Parent, J.M. and Lowenstein, D.H. Mossy fiber reorganization in the epileptic hippocampusCurr. Opin. Neurol.10 (1997) 10–109.Google Scholar
  162. 162.
    Parent, J.M., Yu, T.W., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S., and Lowenstein, D.H. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult ratJ Neurosci.17 (1997) 9727–3738.Google Scholar
  163. 163.
    Pellegrini-Giampietro, D.E., Gorter, J.A., Bennett, M.V.L., and Zukin, R.S. The G1uR2 (G1uR-B) hypothesis: Ca2tpermeable AMPA receptors in neurological disordersTrends Neurosci.20 (1997) 464–470.PubMedGoogle Scholar
  164. 164.
    Pisa, M., Sanberg, M.R., Corcoran, M.E., and Fibiger, H.C. Spontaneously recurrent seizures after intracerebral injections of kainic acid in rat: a possible model of human temporal lobe epilepsyBrain Res.200 (1980) 481–487.PubMedGoogle Scholar
  165. 165.
    Rauschecker, J.P., Egert, U., and Kossel, A. Effects of NMDA antagonists on developmental plasticity in kitten visual cortexInt. J Development Neurosci.8 (1990) 425–435.Google Scholar
  166. 166.
    Represa, A., Le Gall La Salle, G., and Ben-Ari, Y. Hippocampal plasticity in the kindling model of epilepsy in ratsNeurosci. Lett.99 (1989) 345–350.PubMedGoogle Scholar
  167. 167.
    Ribak, C.E. and Baram, T.Z. Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH-induced status epilepticus in infant ratsDev. Brain Res.91 (1996) 245–251.Google Scholar
  168. 168.
    Ribak, C.E. and Navetta, M.S. An immature mossy fiber innervation of hilar neurons may explain their resistance to kainate-induced cell death in 15-day-old ratsDev. Brain Res.79 (1994) 47–62.Google Scholar
  169. 169.
    Rocca, W.A., Sharbrough, F.W., Hauser, W.A., Annegers, J.F., and Schoenberg, B.S. Risk factors for complex partial seizures: A population-based case-control studyAnn. Neurol.21 (1987) 22–31.PubMedGoogle Scholar
  170. 170.
    Rodin, E.A., Schmaltz, S., and Twitty, G. Intellectual functions of patients with childhood-onset epilepsyDevelopmental Medicine and Child Neurology28 (1986) 25–33.PubMedGoogle Scholar
  171. 171.
    Rothe, F., Schmidt, W, and Wolf, G. Postnatal changes in the activity of glutamate dehydrogenase and aspartate aminotransferase in the rat nervous system with special reference to the glutamate transmitter metabolismDev. Brain Res. 11(1983) 67–74.Google Scholar
  172. 172.
    Rutecki, P.A. and Yang, Y. Metabotropic glutamate receptor activation modulates epileptiform activity in the hippocampusNeuroscience81 (1997) 927–935.PubMedGoogle Scholar
  173. 173.
    Saccan, A.I. and Schoepp, D.D. Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damageNeurosci. Lett.139 (1992) 77–82.Google Scholar
  174. 174.
    Sanes, J.R. and Lichtman, J.W. Can molecules explain long-term potentiation?Nature Neurosci.2 (1999) 597–604.PubMedGoogle Scholar
  175. 175.
    Sankar, R., Shin, D.H., Liu, H., Mazarati, A., Pereira de Vasconcelos, A., and Wasterlain C.G. Patterns of status epilepticus-induced neuronal injury during development and long-term consequencesJ. Neurosci.18 (1998) 8382–8393.PubMedGoogle Scholar
  176. 176.
    Sastry, B.R., Goh, J.W, and Auyeung, A. Associative induction of posttetanic and long-term potentiation in CAl neurons of rat hippocampusScience232 (1986) 988–990.PubMedGoogle Scholar
  177. 177.
    Scheyer, R.D. Involvement of glutamate in human epileptic activitiesProgr. Brain Res.116 (1998) 359–369.Google Scholar
  178. 178.
    Schmidt, W. and Wolf, G. High-affinity uptake of L-[3H]glutamate and D-[3H]aspartate during postnatal development of the hippocampal formation: a quantitative autoradiographic studyExp. Brain Res.70 (1988) 50–54.PubMedGoogle Scholar
  179. 179.
    Schoepfer, R., Monyer, H., Sommer, B., Wisden, W, Sprengel, R., Kuner, T., Lomeli, H., Herb, A., Kohler, M., Burnashev, N., et al. Molecular biology of glutamate receptorsProg. Neurobiol.42 (1994) 353–357.PubMedGoogle Scholar
  180. 180.
    Schoepp, D.D., Bockaert, J., and Sladeczek, F. Pharmacological and functional characteristics of metabotropic excitatory amino acid receptorsTrends Pharmacol. Sci. 11(1990) 508–515.PubMedGoogle Scholar
  181. 181.
    Sherwin, A.L., Quesney, L.F., Gauthier, S., Olivier, A., Robitaille, Y, McQuaid. P., Harvey, C., and van Gelder, N. Enzyme changes in actively spiking areas of human epileptic cerebral cortexNeurology34 (1984) 927–933.PubMedGoogle Scholar
  182. 182.
    Siesjo, B.K. Historical review: calcium, ischemia, and death of brain cellsAnn. NY Acad. Sci.522 (1988) 638–661.PubMedGoogle Scholar
  183. 183.
    Sloviter, R.S. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsyScience253 (1987) 73–76.Google Scholar
  184. 184.
    Sloviter, R.S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “Dormant Basket Cell” hypothesis and its possible relevance to temporal lobe epilepsyHippocampus1 (1991) 41–66.PubMedGoogle Scholar
  185. 185.
    Sloviter, R.S. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsyAnn. Neurol.35 (1994) 640–654.PubMedGoogle Scholar
  186. 186.
    Sloviter, R.S. and Dempster, D.W. “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholineBrain Res. Bull.15 (1985) 39–60.PubMedGoogle Scholar
  187. 187.
    Sperber, E.F., German, I.M., Friedman, L.K., Veliskova, J., and Romero, M.T. The resiliency of the immature brain to seizure induced damage. In: A. Nehlig, J. Motte, S.L. Moshe, and P. Plounin (Eds.):Childhood Epilepsies and Brain DevelopmentJohn Libbey, London (1999) pp. 255–262Google Scholar
  188. 188.
    Sperber, E.F., Haas, K.Z., Stanton, P.K., and Moshé, S.L. Resistance of the immature hippocampus to seizure-induced synaptic reorganizationDev. Brain Res.60 (1991) 88–93.Google Scholar
  189. 189.
    Stafstrom, C.E., Holmes, G.L., Chronopoulos, A., Thurber, S., and Thompson, J.L. Age-dependent cognitive and behavioral deficits following kainic acid-induced seizuresEpilepsia34 (1993) 420–432.PubMedGoogle Scholar
  190. 190.
    Stafstrom, C.E., Tandon, P, Hori, A., Liu, Z., Mikati, M.A., and Holmes, G.L. Acute effects of MK801 on kainic acid-induced seizures in neonatal ratsEpilepsy Res.26 (1997) 335–344.PubMedGoogle Scholar
  191. 191.
    Stafstrom, C.E., Thompson, J.L., and Holmes, G.L. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizuresDev. Brain Res.65 (1992) 237–246.Google Scholar
  192. 192.
    Stanfield, B.B. Excessive intra-and supragranular mossy fibers in the dentate gyrus of tottering (tg/tg) miceBrain Res.480 (1989) 294–299.PubMedGoogle Scholar
  193. 193.
    Sugiyama, H., Ito, I., and Hirono, C. A new type of glutamate receptor linked to inositol phospholipid metabolismNature325 (1987) 531–533.PubMedGoogle Scholar
  194. 194.
    Sugiyama, H., Ito, I., and Watanabe, M. Glutamate receptor subtypes may be classified into two major categories: a study on Xenopus oocytes injected with rat brain mRNANeuron3 (1989) 129–132.PubMedGoogle Scholar
  195. 195.
    Sutor, B. and Hablitz, J.J. Long-term potentiation in frontal cortex: role of NMDA-modulated polysynaptic excitatory pathwaysNeurosci. Lett.97 (1989) 111–117.PubMedGoogle Scholar
  196. 196.
    Sutula, T., Cascino, G., Cavazos, J., Parada, I., and Ramirez, L. Mossy fiber synaptic reorganization in the epileptic human temporal lobeAnn. Neurol.26 (1989) 321–330.PubMedGoogle Scholar
  197. 197.
    Sutula, T., Koch, J., Golarai, G., Watanabe, Y, and McNamara, J.O. NMDA receptor dependence of kindling and mossy fiber sprouting: evidence that the NMDA receptor regulates patterning of hippocampal circuits in the adult brainJ. Neurosci.16 (1996) 7398–7406.PubMedGoogle Scholar
  198. 198.
    Sutula, T., Lauersdorf, S., Lynch, M., Jurgella, C., and Woodard, A. Deficits in radial arm maze performance in kindled rats: evidence for long-lasting memory dysfunction induced by repeated brief seizuresJ. Neurosci.15 (1995) 8295–8301.PubMedGoogle Scholar
  199. 199.
    Sutula, T., Xiao-Xian, H., Cavazos, J., and Scott, G. Synaptic reorganization in the hippocampus induced by abnormal functional activityScience239 (1988) 1147–1150.PubMedGoogle Scholar
  200. 200.
    Sutula, T.P. Experimental models of temporal lobe epilepsy: new insights from the study of kindling and synaptic reorganizationEpilepsia31 (Suppl. 3) (1990) S45–S54.PubMedGoogle Scholar
  201. 201.
    Sutula, T.P. The pathology of the epilepsies: Insights into the causes and consequences of epileptic syndromes. In: W.E. Dodson and J.M. Pellock (Eds.):Pediatric Epilepsy: Diagnosis and TreatmentDemos Publications, New York (1993) pp. 37–44.Google Scholar
  202. 202.
    Tanabe, Y, Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. A family of metabotropic glutamate receptorsNeuron8 (1992) 169–179.PubMedGoogle Scholar
  203. 203.
    Tandon, P., Liu, Z., Stafstrom, C.E., Sarksian, M., Werner, S.J., Mikati, M., Yang, Y, and Holmes, G.L. Long-term effects of excitatory amino acid antagonists NBQX and MK-801 on the developing brainDev. Brain Res.95 (1996) 256–262.Google Scholar
  204. 204.
    Tauck, D. and Nadler, J.V. Evidence of functional mossy fiber sprouting in the hippocampal formation of kainic acid-treated rats, J.Neurosci.5 (1985) 1016–1022.PubMedGoogle Scholar
  205. 205.
    Thurber, S., Chronopoulos, A., Stafstrom, C.E., and Holmes, G.L. Behavioral effects of continuous hippocampal stimulation in the developing ratDev. Brain Res.68 (1992) 35–40.Google Scholar
  206. 206.
    Tremblay, E., Represa, A., and Ben-Ari, Y. Autoradiographic localization of kainic acid binding sites in the human hippocampusBrain Res.343 (1985) 378–382.PubMedGoogle Scholar
  207. 207.
    Tremblay, E., Roisin, M.P., Represa, A., Charriaut-Marlangue, C., and Ben-Ari, Y. Transient increased density of NMDA binding sites in the developing rat hippocampusBrain Res.461 (1988) 393–396.PubMedGoogle Scholar
  208. 208.
    Turski, L., Ikonomidou, C., Turski, W.A., Bortolotto, Z.A., and Cavalheiro, E.A. Review: Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: A novel experimental model of intractable epilepsySynapse3 (1989) 154–171.PubMedGoogle Scholar
  209. 209.
    Turski, WA., Cavalheiro, E.A., Schwarz, M., Czuczwar, S.J., Kleinrok, Z., and Turski, L. Limbic seizures produced by pilocarpine in rats: behavioral, electroencephalographic and neuropathological studyBehay. Brain Res.9 (1983) 315–335Google Scholar
  210. 210.
    Tursky, T., Lassanova, M., Sramka, M., and Nadvornik, P. Formation of glutamate and GABA in epileptogenic tissue from human hippocampus in vitroActa Neurochir.23 (1976) 111–118.Google Scholar
  211. 211.
    Ungerer, A., Mathis, C., Melan, C., and De Barry, J. Role of neuroexcitatory amino acids in memory processes. Study with gamma-L-glutamyl-L-aspartic acidEncephale16 (1990) 423–429.PubMedGoogle Scholar
  212. 212.
    Ungerer, A., Mathis, C., Nélan, C., and De Barry, J. The NMDA receptor antagonists, CPP and gammaL-glutamyl-L-aspartate, selectively block post-training improvement of performance in a Y-maze avoidance learning taskBrain Res.549 (1991) 59–65.PubMedGoogle Scholar
  213. 213.
    Van Landingham, K.E., Heinz, E.R., Cavazos, J.E., and Lewis, D.V. Magnetic resonance imaging evidence of hippocampal injury after prolonged febrile convulsionsAnn. Neurol.43 (1998) 413–426.Google Scholar
  214. 214.
    Wasterlain, C.G., Fujikawa, D.G., Penix, L., and Sankar, R. Pathophysiological mechanisms of brain damage from status epilepticusEpilepsia34 (Suppl. 1) (1993) S37–S53.PubMedGoogle Scholar
  215. 215.
    Wasterlain, C.G. and Sankar, R. Excitotoxicity and the developing brain. In: G. Avanzini, R. Fariello, U. Heinemann, and R. Mutani (Eds.):Epileptogenic and excitotoxic mechanismsJohn Libbey, London (1993) pp. 135–151.Google Scholar
  216. 216.
    Williamson, P.D., French, J.A., Thadani, V.M., Kim, J.H., Novelly, R.A., Spencer, S.S., Spencer, D.D., and Mattson, R.H. Characteristics of medial temporal lobe epilepsy: II. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathologyAnn. Neurol34 (1993) 781–787.PubMedGoogle Scholar
  217. 217.
    Zimmerman, H.M. The histopathology of convulsive disorders in children, J.Pediatr.13 (1941) 859–890.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Carl E. Stafstrom
    • 1
  • Gregory L. Holmes
    • 2
  1. 1.CSCDepartment of Neurology H4/614Madison
  2. 2.Division of Clinical NeurophysiologyChildren’s Hospital Harvard Medical SchoolBoston

Personalised recommendations