Neural Growth, Neural Damage and Neurotrophins in the Kindling Model of Epilepsy

  • Ronald J. Racine
  • Beth Adams
  • Philip Osehobo
  • Margaret Fahnestock
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 497)


Kindling is most frequently cited as a model of complex partial seizures with secondary generalization. As pointed out by Racine and Burnham,119 however, there are a wide variety of clinical events that are suitably modeled by kindling phenomena. We will begin with a brief description of some of these phenomena. Readers familiar with kindling may wish to jump ahead to the section on mechanisms—recent work.


Nerve Growth Factor Status Epilepticus Dentate Gyrus Brain Research Temporal Lobe Epilepsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, B., Sazgar, M., Osehobo, P., Van derZee, C., Diamond, J., Fahnestock, M., and Racine, R. Nerve growth factor accelerates seizure development, enhances mossy fiber sprouting and attenuates seizure-induced decreases in neuronal density in the kindling model of epilepsyJ. Neuroscience17 (1997) 5288–5296.Google Scholar
  2. 2.
    Adams, B., Lee, M., Fahnestock, M., and Racine, R.J. Long-term potentiation trains induce mossy fiber sproutingBrain Res. 775 (1997) 193–197.PubMedGoogle Scholar
  3. 3.
    Babb, T.L., Brown, W.J., Pretorious, J., Davenport, C., Lieb, J.P., and Crandall, P.H. Temporal lobe volumetric cell densities in temporal lobe epilepsyEpilepsia25 (1984) 729–740.PubMedGoogle Scholar
  4. 4.
    Babb, T.L., Kupfer, W.R., Pretorius, J.K., Crandall, P.H., and Levesque, M.F. Synaptic reorganization by mossy fibers in human epileptic fascia dentataNeuroscience42 (1991) 351–363.PubMedGoogle Scholar
  5. 5.
    Bailey, C.H. and Kandel, E.R. Structural changes accompanying memory storageAnnu. Rev. Physiol.55 (1993) 397–426.PubMedGoogle Scholar
  6. 6.
    Bekenstein, J.W and Lothman, E.W. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsyScience259 (1993) 97–100.PubMedGoogle Scholar
  7. 7.
    Ben-Ari, Y Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsyNeuroscience14 (1985) 375–403.PubMedGoogle Scholar
  8. 8.
    Ben-Ari, Y, Krnjevic, K., and Reinhardt, W. Hippocampal seizures and failure of inhibitionCanadian J. Psychol.57 (1979) 1462–1466.Google Scholar
  9. 9.
    Bengzon, J., Soderstrom, S., Kokaia, Z., Kokaia, M., Ernfors, P., Persson, H., Ebendal, T., and Lindvall, O. Widespread increase of nerve growth factor protein in the rat forebrain after kindling-induced seizuresBrain Research587 (1992) 338–342.PubMedGoogle Scholar
  10. 10.
    Bengzon, J., Kokaia, Z., Ernfors, E, Kokaia, M., Leanza, G., Nilsson, O.G., Persson, H., and Lindvall, O. Regulation of neurotrophin andtrkA trkB andtrkC tyrosine kinase receptor messenger RNA expression in kindling,Neuroscience 53 (1993) 433–446.PubMedGoogle Scholar
  11. 11.
    Bertram, E.H. and Lothman, E.W. Morphometric effects of intermittent kindled seizures and limbic status epilepticus in the dentate gyrus of the ratBrain Research603 (1993) 25–31.PubMedGoogle Scholar
  12. 12.
    Bertram, E.H., Lothman, E.W., and Lenn, N.J. The hippocampus in experimental chronic epilepsy: a morphometric analysisAnn. Neurol.27 (1990) 43–48.PubMedGoogle Scholar
  13. 13.
    Burnham, W.M. The GABA hypothesis of kindling: recent assay studiesNeuroscience & Biobehavioral Reviews13 (1989) 281–288.Google Scholar
  14. 14.
    Burnham, W.M., Cottrell, G.A., Diosy, D., and Racine, R.J. Long-term changes in entorhinal-dentate evoked potentials induced by electroconvulsive shock seizures in ratsBrain Research698 (1995) 180–184.PubMedGoogle Scholar
  15. 15.
    Cain, D.P. Seizure development following repeated electrical stimulation of central olfactory structuresAnn. NY Acad. Sci.290 (1977) 200–216.PubMedGoogle Scholar
  16. 16.
    Cain, D.P. Long-term potentiation and kindling: how similar are the mechanisms?Trends Neurosci.12 (1989) 6–10.PubMedGoogle Scholar
  17. 17.
    Cain, D.P., Corcoran, M., and Staines, WA. Effects of protein synthesis inhibition on kindling in the mouseExperimental Neurology68 (1980) 409–419.PubMedGoogle Scholar
  18. 18.
    Cavalheiro, E.A., Silva, D.F., Turski, W.A., Calderazzofilho, L.S., Bortolotto, Z.A., and Turski, L. The susceptibility of rats to pilocarpine-induced seizures is age-dependentDev. Brain Res.37 (1987) 43–58.Google Scholar
  19. 19.
    Cavazos, J.E., DasI.,and Sutula, T.P. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures,J. Neuroscience, 14 (1994) 3106–3121.Google Scholar
  20. 20.
    Cavazos, J.E. and Sutula, T.P. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosisBrain Research527 (1990) 1–6.PubMedGoogle Scholar
  21. 21.
    Chan-Palay, V., Lang, W, Haesler, U., Kohler, C., and Yasargil, G. Distribution of altered hippocampal neurons and axons immunoreactive with antisera against neuropeptide Y in Alzheimer’s-type dementiaJ. Comp. Neurot.248 (1986) 376–394.Google Scholar
  22. 22.
    Chang, F-L., F., Hawrylak, N., and Greenough, W.T. Astrocytic and synaptic response to kindling in hippocampal subfield CAl. I. Synaptogenesis in response to kindling in vitroBrain Research603 (1993) 302–308.PubMedGoogle Scholar
  23. 23.
    Clifford, D.B., Olney, J.W., Maniotis, A., Collins, R.C., and Zorumski, C.F. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizuresNeuroscience23 (1987) 953–968.PubMedGoogle Scholar
  24. 24.
    Clusmann, H., Stabel, J., Stephen, D.N., and Heinemann, U. Alterations in medial perforant path and mossy fiber induced field potentials in amygdala and B-carboline (FG 7142) kindled ratsNeurosci. Lett.146 (1992) 65–68.PubMedGoogle Scholar
  25. 25.
    Crandall, J.E., Bernstein, J., Boast, C., and Zornetzer, S. Kindling in the rat hippocampus: absence of dendritic alterationsBehay. Neural Biol.27 (1970) 516–522.Google Scholar
  26. 26.
    Cronin, J. and Dudek, F.E. Chronic seizure and collateral sprouting of dentate mossy fibers after kainic acid treatment in ratsBrain Research474 (1988) 65–68.Google Scholar
  27. 27.
    Cronin, J., Obenaus, A., Houser, C.R., and Dudek, F.E. Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of mossy fibersBrain Research573 (1992) 305–310.PubMedGoogle Scholar
  28. 28.
    Dam, A.M. Epilepsy and neuron loss in hippocampusEpilepsia21 (1980) 617–629.PubMedGoogle Scholar
  29. 29.
    Danscher, G. Histochemical demonstration of heavy metals: a revised version of the sulphide silver method suitable for both light and electron microscopyHistochemistry71 (1981) 1–16.PubMedGoogle Scholar
  30. 30.
    de Jonge, M. and Racine, R.J. The development and decay of kindling-induced increases in paired-pulse depression in the dentate gyrusBrain Research412 (1987) 318–328.PubMedGoogle Scholar
  31. 31.
    Douglas, R.M. and Goddard, G.V. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampusBrain Research86 (1975) 205–215.PubMedGoogle Scholar
  32. 32.
    Dragunow, M. and Robertson, H.A. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrusNature329 (1987) 441–442.PubMedGoogle Scholar
  33. 33.
    Dragunow, M., Currie, R.W., Faull, R.L.M., Robertson, H.A., and Jansen, K. Immediate-early genes, kindling and long-term potentiationNeuroscience & Biobehavioral Reviews13 (1989) 301–313.Google Scholar
  34. 34.
    Dudek, F.E., Obehaus, A., Jeffrey, S.S., and Wuarin, J-P. Functional significance of hippocampal plasticity in epileptic brain: Electrophysiological changes of the dentate granule cells associated with mossy fiber sproutingHippocampus4 (1994) 259–265.PubMedGoogle Scholar
  35. 35.
    Dugich-Djordjevic, M.M., Tocco, G., Lapchak, P.A., Pasinetti, G.M., Najm, I., Baudry, M., and Hefti, F. Regionally specific and rapid increases in brain-derived neurotrophic factor messenger RNA in the adult rat brain following seizures induced by systemic administration of kainic acidNeuroscience47 (1992) 303–315.PubMedGoogle Scholar
  36. 36.
    Ebert, U. and Loscher, W Strong induction of c-fos in the piriform cortex during focal seizures evoked from different limbic brain sitesBrain Research671 (1995) 338–344.Google Scholar
  37. 37.
    Ernfors, P, Bengzon, J., Kokaia, Z., Persson, H., and Lindvall, O. Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesisNeuron7 (1991) 165–176.PubMedGoogle Scholar
  38. 38.
    Falconer, M.A. Mesial temporal (Ammon’s horn) sclerosis as a common cause of epilepsy-etiology, treatment and preventionLancet(1974) September 28 (1974) 767–770.Google Scholar
  39. 39.
    Fields, R.D. and Nelson, P.G. Activity-dependent development of the vertebrate nervous systemInt. Rev. Neurobiol.34 (1992) 133–214.PubMedGoogle Scholar
  40. 40.
    Franck, J.E. and Schwartzkroin, PA. Do kainate-lesioned hippocampi become epileptogenic?Brain Research329 (1985) 309–313.PubMedGoogle Scholar
  41. 41.
    Freund, T.F., Ylinen, A., Miettinen, R., Pitkanen, A., Lahtinen, H., Baimbridge, K.G., and Riekkinen, P.J. Pattern of neuronal death in the rat hippocampus after status epilepticus. Relationship to calcium binding protein content and ischemic vulnerabilityBrain Research28 (1991) 27–38.Google Scholar
  42. 42.
    Funabashi, T., Sasaki, H., and Kimura, F. Intraventricular injection of antiserum to nerve growth factor delays the development of amygdaloid kindlingBrain Research458 (1988) 132–136.PubMedGoogle Scholar
  43. 43.
    Gall, C.M. and Isackson, P.J. Limbic seizures increase neuronal production of messenger RNA for nerve growth factorScience245 (1989) 758–761.PubMedGoogle Scholar
  44. 44.
    Gall, C.M., Murray, K., and Isackson, P.J. Kainic acid-induced seizures stimulate increased expression of nerve growth factor mRNA in rat hippocampusMol. Brain Res9 (1991) 113–123.PubMedGoogle Scholar
  45. 45.
    Geinisman, Y., Morrell, E, and deToledo-Morrell, L. Increase in the relative proportion of perforated axospinous synapses following hippocampal kindling is specific for the synaptic field of stimulated axonsBrain Research507 (1990) 325–331.PubMedGoogle Scholar
  46. 46.
    Gloor, P. Mesial temporal sclerosis: historical background and overview from a modern perspective. In: H. Luders, (Ed.)Epilepsy surgeryNew York, Raven Press (1991) pp. 689–703.Google Scholar
  47. 47.
    Goddard, G.V. Development of epileptic seizures through brain stimulation at low intensityNature214 (1967) 1020–1021.PubMedGoogle Scholar
  48. 48.
    Goddard, G.V., Mclntrye, D.C., and Leech, C.K. A permanent change in brain function resulting form daily electrical stimulationExp. Neurol.25 (1969) 295–330.PubMedGoogle Scholar
  49. 49.
    Golarai, G. and Sutula, T.P. Functional alterations in the dentate gyrus after induction of long-term potentiation, kindling, and mossy fiber sproutingJ. Neurophysiology75 (1996) 343–354.Google Scholar
  50. 50.
    Gotz, R., Koster, R., Winkler, C., Raulf, F, Lottspeich, R, Schartl, M., and Thoenen, H. Neurotrophin6 is a new member of the nerve growth factor familyNature372 (1994) 266–268.PubMedGoogle Scholar
  51. 51.
    Hallbook, F., Ibanez, C.F., and Persson, H. Evolutionary studies on the nerve growth family reveal a novel member abundantly expressed inXenopusovary,Neuron, 68 (1991) 845–858.Google Scholar
  52. 52.
    Hansen, A., Jorgensen, O.S., Bolwig, T.G., and Barry, D.I. Hippocampal kindling in the rat is associated with time-dependent increases in the concentration of glial fibrillary acidic proteinJ Neurochemistry57 (1991) 1716–1720.Google Scholar
  53. 53.
    Hansen, A., Jorgensen, O.S., Bolwig, T.G., and Barry, D.I. Hippocampal kindling alters the concentration of glial fibrillary acidic protein and other marker proteins in rat brainBrain Research531 (1990) 307–311.PubMedGoogle Scholar
  54. 54.
    Hauser, W.A. Status epilepticus: frequency, etiology, and neurological sequelaeAdv. Neurol.34 (1983) 3–14.PubMedGoogle Scholar
  55. 55.
    Hawrylak, N., Chang, F-L.F., and Greenough, W.T. Astrocytic and synaptic response to kindling in hippocampal subfield CA1. II. Synaptogenesis and astrocytic process increases to in vivo kindlingBrain Research603 (1993) 309–316.PubMedGoogle Scholar
  56. 56.
    Heinemann, U., Clussmann, H., Dreier, J., and Stabel, J. Changes in synaptic transmission in the kindled hippocampusAdv. Exp. Med. Biol.268 (1990) 445–450.PubMedGoogle Scholar
  57. 57.
    Hikiji, M., Tomia, H., Ono, M., Fujiwara, Y., and Akiyama, K. Increase of kainate receptor mRNA in the hippocampal CA3 of amygdala-kindled rats detected byin situhybridization,Life Sciences, 53 (1993) 857–864.PubMedGoogle Scholar
  58. 58.
    Hofer, M., Pagliusi, S.R., Hohn, A., Leibrock, J., and Barde, YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brainEMBOJ., 9 (1990) 2459–2464.Google Scholar
  59. 59.
    Houser, C.R., Miyashiro, J.E., Swartz, B.E., Walsh, G.O., Rich, J.R., and Delgado-Escueta, A.V. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy, JNeuroscience10 (1990) 267–282.Google Scholar
  60. 60.
    Hughes, P. and Dragunow, M. Muscarinic receptor-mediated induction of Fos protein in rat brainNeuroscience Letters150 (1993) 122–126.Google Scholar
  61. 61.
    Humpel, C., Wetmore, C., and Olson, L. Regulation of brain-derived neurotrophic factor messenger RNA and protein at the cellular level in phenylenetetrazol-induced epileptic seizuresNeuroscience53 (1993) 909–918.PubMedGoogle Scholar
  62. 62.
    Ip, N.Y., Li, Y., Yancopoulos, G.D., and Lindsay, R.M. JNeuroscience13 (1993) 3394–3405. (Note: Report that BDNF elicits expression of c-fos in hippocampus-check).Google Scholar
  63. 63.
    Isackson, P.J., Huntsman, M.M., Murray, K.D., and Gall, C.M. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct form NGFNeuron6 (1991) 937–948.PubMedGoogle Scholar
  64. 64.
    Isokawa-Akesson, M., Wilson, C.L, and Babb, T.L. Inhibition in synchronously firing human hippocampal neuronsEpilepsy Res.3 (1989) 236–247.PubMedGoogle Scholar
  65. 65.
    Johansen, F.F. Interneurons in rat hippocampus after cerebral ischemiaActa Neurologica Scandinavica88, Suppl 150 (1993) 1–32.Google Scholar
  66. 66.
    Jonec, V. and Wasterlain, C.G. Effect of inhibitors of protein synthesis on the development of kindled seizures in ratsExp. Neurot.66 (1979) 524–532.Google Scholar
  67. 67.
    Kairiss, E.W. Hippocampal slice studies of kindling-induced epilepsy, Ph.D. Thesis, McMaster University, Hamilton, Ontario, 1985.Google Scholar
  68. 68.
    Kamphuis, W, Wadman, W, Buijs, R.M., and Lopes da Silva, F.H. Decrease in number of hippocampal gamma-aminobutyric acid (GABA) immunoreactive cells in the rat kindling model of epilepsyExp. Brain Res.64 (1986) 491–495.PubMedGoogle Scholar
  69. 69.
    Kamphuis, W. and Lopes da Silva, F.H. The kindling model of epilepsy: the role of GABAergic inhibitionNeuroscience Research Communications6 (1990) 1–9.Google Scholar
  70. 70.
    Kamphuis, W, Monyer, H., De Rijk, T.C., and Lopes da Silva, F.H. Hippocampal kindling increases the expression of glutamate receptor -A Flip and -B Flip mRNA in dentate granule cellsNeuroscience Letters148 (1992) 51–54.PubMedGoogle Scholar
  71. 71.
    Kelly, M.E. and McIntyre, D.C. The effects of piriform and perirhinal cortex damage on convulsive seizures in kindled rats.Epilepsia36, (suppl. 4) (1995) p. 87.Google Scholar
  72. 72.
    Khan, S.U., Wilson, C.L., Isokawa-Akesson, M., Babb, T.L., and Levesque, M.E. Increased paired-pulse inhibition in the epileptogenic human temporal lobeSoc. Neurosci. Abstra.15 (1989) 236.Google Scholar
  73. 73.
    Khan, S.U., Wilson, C., Engel Jr. J., and Levesque, M.F. Contrasting changes in EPSP slope of associational and perforant pathways in epileptic patientsEpilepsia31 (1990) 651.Google Scholar
  74. 74.
    Khurgel, M., Racine, R.J., and Ivy, G.O. Kindling causes changes in the composition of the astrocytic cytoskeletonBrain Research592 (1992) 338–342.PubMedGoogle Scholar
  75. 75.
    Khurgel, M., Ivy, G.O., and Racine, R.J. Seizure-induced activation of astrocytes in the absence of neuronal degeneration.Neurobiology of Disease2 (1995) 23–35.PubMedGoogle Scholar
  76. 76.
    Kim, J.H., Guimaraes, P.O., Shen, M.Y., Masukawa, L.M., and Spencer, D.D. Hippocampal neuronal density in temporal lobe epilepsy with and without gliomasActa Neuropathol.80 (1990) 41–45.PubMedGoogle Scholar
  77. 77.
    King, G.L., Dingledine, R., Giacchino, J.L., and McNamara, J.O. Abnormal neuronal excitability in hippocampal slices from kindled rats, JNeurophysioL54 (1985) 1295–1304.Google Scholar
  78. 78.
    Kohr, G., de Koninck, Y, and Mody, I. Properties of NMDA receptor channels in neurons acutely isolated from epileptic (kindled) ratsJ. Neuroscience13 (1993) 3612–3627.Google Scholar
  79. 79.
    Kostopoulos, G. and Antoniadis, G. A comparison of recurrent inhibition and of paired-pulse facilitation in hippocampal slices from normal and genetically epileptic miceEpilepsy Res.9 (1991) 184–194.PubMedGoogle Scholar
  80. 80.
    Kraus, J.E., Yeh, G-C., Bonhaus, D.W., Nadler, J.V., and McNamara, J.O. Kindling induces the long-lasting expression of a novel population of NMDA receptors in hippocampal region CA3J. Neuroscience14 (1994) 4196–4205.Google Scholar
  81. 81.
    Lahmer, D.M., Butler, L.S., Cao, Z., Hosford, D.A., Shin, C., and McNamara, J.O. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firingJ. Neuroscience13 (1993) 744–751.Google Scholar
  82. 82.
    Leung, L.S. Spontaneous hippocampal interictal spikes following local kindling: Time-course of change and relations to behavioural seizuresBrain Research513 (1990) 308–314.PubMedGoogle Scholar
  83. 83.
    Lindsay, R.M., Wiegand, S.J., Alter, C.A., and DiStefano, P.S. Neurotrophic factors: from molecule to manTrends Neurosci.17 (1994) 182–190.PubMedGoogle Scholar
  84. 84.
    Margerison, J.H. and Corsellis, J. Epilepsy and the temporal lobesBrain89 (1966) 499–530.PubMedGoogle Scholar
  85. 85.
    Masukawa, L.M., Uruno, K., Sperling. M., O’Connor, M.J., and Burdette, L.J. The functional relationship between antidromically evoked field response of the dentate gyrus and mossy fiber reorganization in temporal lobe epileptic patientsBrain Research579 (1992) 119–127.PubMedGoogle Scholar
  86. 86.
    Mathern, G.W, Pretorius, J.K., and Babb, T.L. Quantified patterns of mossy fiber sprouting and neuron densities in hippocampal and lesional seizures, J.Neurosurgery82 (1995) 211–219.Google Scholar
  87. 87.
    Mathern, G.W., Babb, T.L., Pretorius, J.K., and Leite, J.P. Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase-immunoreactivity in the epileptogenic human fascia dentata, J.Neuroscience15 (1995) 3990–4004.Google Scholar
  88. 88.
    Mathern, G.W, Pretorius, J.K., Babb, T.L., and Quinn, B. Unilateral hippocampal mossy fiber sprouting and bilateral asymmetric neuron loss with episodic postictal psychosisJ. Neurosurgery82 (1995) 228–233.Google Scholar
  89. 89.
    Mathern, G.W., Pretorius, J.K., and Babb, T.L. Influence of the type of initial precipitating injury and at what age it occurs on course and outcome in patients with temporal lobe seizures, JNeurosurgery82 (1995) 220–227.Google Scholar
  90. 90.
    McIntyre, D.C. and Goddard, G.V. Transfer, interference and spontaneous recovery of convulsions kindled from the rat amygdalaElectroencephalogr. Clin. Neurophysiol.35 (1973) 533–543.PubMedGoogle Scholar
  91. 91.
    McIntyre, D.C., Kelly, M.E., and Armstrong, J.N. Kindling in the perirhinal cortexBrain Research615 (1993) 1–6.PubMedGoogle Scholar
  92. 92.
    McIntyre, D.C., Nathanson, D., and Edson, N. A new model of partial status epilepticus based on kindlingBrain Research250 (1982) 53–63.PubMedGoogle Scholar
  93. 93.
    McIntyre, D.C. and Plant, J.R. Pyriform cortex involvement in kindlingNeuroscience & Behavioral Reviews13 (1989) 277–280.Google Scholar
  94. 94.
    McIntyre, D.C. and Wong, R.K.S. Cellular and synaptic properties of amygdala-kindled pyriform cortex in vitroJ. Neurophysiol.55 (1986) 1295–1307.PubMedGoogle Scholar
  95. 95.
    Meberg, P.J., Gall, C.M., and Routtenberg, A. Induction of F1/Gap-43 gene expression in hippocampal granule cells after seizuresMolecular Brain Research17 (1993) 295–297.PubMedGoogle Scholar
  96. 96.
    Meldrum, B., Vigouroux, R., and Brierley, J. Systemic factors and epileptic brain damage: prolonged seizures in paralyzed artificially ventilated baboonsArch. Neurot Psychol.29 (1973) 82–87.Google Scholar
  97. 97.
    Merlio, J.P., Ernfors, P, Kokaia, Z., Middlemas, D.S., Bengzon, J., Kobaia, M., Smith, M.-L., Siesjo, B.K., Hunter, T., Lindvall, O., and Persson, H. Increased production of the trkB protein tyrosine kinase receptor after brain insultsNeuron 10 (1993) 151–164.PubMedGoogle Scholar
  98. 98.
    Milgram, N.W., Green, I., Siberman, M., Riexinger, K., and Petit, T.L. Establishment of status epilepticus by limbic system stimulation in previously unstimulated ratsExp. Neurol.88 (1985) 253–264.PubMedGoogle Scholar
  99. 99.
    Milgram, NW., Michael, M., Cammisuli, S., Head, E., Ferbinteanu, J., Reid, C., Murphy, M.P., and Racine, R. Development of spontaneous seizures over extended electrical kindling. II. Persistence of dentate inhibitory suppressionBrain Research670 (1995) 112–120.Google Scholar
  100. 100.
    Milgram, N.W., Yearwood, T., Khurgel, M., Ivy, G.O., and Racine, R. Changes in inhibitory processes in the hippocampus following recurrent seizures induced by systemic administration of kainic acidBrain Research 551 (1991) 236–246.PubMedGoogle Scholar
  101. 101.
    Mitchell, C.L. and Barnes, M.I. Effect of destruction of dentate granule cells on kindling induced by stimulation of the perforant pathPhysiology & Behavior53 (1993) 45–49.Google Scholar
  102. 102.
    Mody, I., Otis, T.S., Staley, K.J., and Kohr, G. The balance between excitation and inhibition in dentate granule cells and its role in epilepsy, In J. EngelC.Wasterlain, E.A. Cavalheiro, U. Heinemann, and G. Avanzini (Eds.)Molecular Neurobiology of Epilepsy (Epilepsy Res. Suppl., 9), Elsevier, 1992, pp. 331–339.Google Scholar
  103. 103.
    Mouritzen-Dam, A. Epilepsy and neuron loss in the hippocampusEpilepsia21 (1980) 617–629.Google Scholar
  104. 104.
    Nadler, J.V., Perry, B.C., and Cotman, C.W. Selective reinnervation of hippocampal area CAI and the fascia dentata after destruction of CA3–CA4 afferents with kainic acidBrain Research192 (1980) 387–403.Google Scholar
  105. 105.
    Nadler, J. and Cuthbertson, G. Kainic acid neurotoxicity toward the hippocampal formation: dependence on specific excitatory pathways.Brain Research195 (1980) 47–56.PubMedGoogle Scholar
  106. 106.
    Nagao, R., Avoli, M., and Gloor, P. Interictal discharges in the hippocampus of rats with long-term pilocarpine seizuresNeurosci. Lett.1974 (1994) 160–164.Google Scholar
  107. 107.
    Nevander, G., Ingvar, M., Auer, R., and Siesjo, B.K. Status epilepticus in well-oxygenated rats causes neuronal necrosisAnn. Neurol.18 (1985) 281–290.PubMedGoogle Scholar
  108. 108.
    Nishizuka, M., Okada, R., Seki, K., Arai, Y., and Iizuka, R. Loss of dendritic synapses in the medial amygdala associated with kindlingBrain Research552 (1991) 351–355.PubMedGoogle Scholar
  109. 109.
    Ogata, N. Effects of cycloheximide on experimental epilepsy induced by daily amygdaloid stimulation in rabbitsEpilepsia18 (1977) 101–108.PubMedGoogle Scholar
  110. 110.
    Okada, R., Nishizuka, M., Iizuka, R., and Arai, Y. Persistence of reorganized synaptic connectivity in the amygdala of kindled ratsBrain Res. Bull.31 (1993) 631–635.PubMedGoogle Scholar
  111. 111.
    O’Shaugnessy, D. and Gerber, G.J. Damage induced by systemic kainic acid in rats is dependent upon seizure activity-a behavioral and morphological studyNeurotoxicology7 (1986) 187–202.Google Scholar
  112. 112.
    Patel, M.N. and McNamara, J.O.Soc. Neuroscience Abstra.19 (1993) 257. (Note: Report that BDNF triggers dendritic branching in cultures of dentate gyrus granule cells-check)Google Scholar
  113. 113.
    Phillips, H.S., Hains, J.M., Laramee, G.R., Rosenthal, A., and Winslow, J.W. Widespread expression of BDNF but not NT-3 by target areas of basal forebrain cholinergic neuronsScience250 (1990) 290–294.PubMedGoogle Scholar
  114. 114.
    Pinel, J.P.J., Mucha, R.F., and Phillips, A.G. Spontaneous seizures generated in rats by kindling: a preliminary reportPhysiol. Psychol.3 (1975) 127–129.Google Scholar
  115. 115.
    Pinel, J.P.J. and Rovner, L.I. Electrode placement and kindling-induced experimental epilepsyExp. Neurol.58 (1978) 335–346.PubMedGoogle Scholar
  116. 116.
    Qiao, X. and Noebels, J.L. Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike-wave seizuresJ Neuroscience13 (1993) 4622–4635.Google Scholar
  117. 117.
    Racine, R.J. Modification of seizure activity by electrical stimulation: II. Motor seizureElectroenceph. Clin. Neurophysiol.32 (1972) 281–294.Google Scholar
  118. 118.
    Racine, R.J. Kindling: The first decadeNeurosurgery3 (1978) 234–252.PubMedGoogle Scholar
  119. 119.
    Racine, R.J. and Burnham, W.M. The Kindling Model, In: H. Wheal, and P. Schwartzkroin (Eds.)Electrophysiology of EpilepsyAcademic Press, London (1984) pp. 153–171.Google Scholar
  120. 120.
    Racine, R.J., Burnham, W.M., Gilbert, M., and Kairiss, E.W. Kindling mechanisms: I. Electrophysiological studiesKindling 3In J.A. Wada (Ed.) Raven Press, New York (1986) pp. 263–282.Google Scholar
  121. 121.
    Racine, R.J., Chapman, C.A., Teskey, G.C., and Milgram, N.W. Post-activation potentiation in the neo-cortex. III. Kindling-induced potentiation in the chronic preparationBrain Research702 (1995) 77–86.PubMedGoogle Scholar
  122. 122.
    Racine, R.J., Gartner, J.G., and Burnham, W.M. Epileptiform activity and neural plasticity in limbic structuresBrain Research47 (1972) 262–268.PubMedGoogle Scholar
  123. 123.
    Racine, R.J., Paxinos, G., Mosher, J.M., and Kairiss, E.W. The effects of various lesions and knife-cuts on septal and amygdala kindling in the ratBrain Research454 (1988a) 264–274.Google Scholar
  124. 124.
    Racine, R.J., Milgram, W.N., and Hafner, S. Long-term potentiation phenomena in the rat limbic forebrainBrain Research260 (1983) 217–231.PubMedGoogle Scholar
  125. 125.
    Racine, R.J., Moore, K.-A., and Evans, C. Kindling-induced potentiation in the piriform cortexBrain Research556 (1991) 218–225.PubMedGoogle Scholar
  126. 126.
    Racine, R.J., Mosher, M., and Kairiss, E.W. The role of the piriform cortex in the generation of interictal spikes in the kindled preparationBrain Research454 (1988b) 251–263.Google Scholar
  127. 127.
    Racine, R.J., Newberry, F., and Burnham, W.M. Post-activation potentiation and the kindling phenomenonElectroencephalgr. Clin. Neurophysiol.39 (1975) 261–271.Google Scholar
  128. 128.
    Rashid, K., Van der Zee, C.E.E.M., Ross, G.M., Chapman, C.A., Stanisz, J., Riopelle, R.J., Racine, R.J., and Fahnestock, M. A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsyProc. Natl. Acad. Sci. USA.92 (1995) 9495–9499.PubMedGoogle Scholar
  129. 129.
    Represa, A., Jorquera, I., Le Gal La Salle, G., and Ben-Ari, Y. Epilepsy induced collateral sprouting of hippocampal mossy fibers: Does it induce the development of ectopic synapses with granule cell dendrites?Hippocampus3 (1993) 257–268.PubMedGoogle Scholar
  130. 130.
    Represa A. and Ben-Ari Y Kindling is associated with the formation of novel mossy fibre synapses in the CA3 regionExp. Brain Res.92 (1992) 69–78.PubMedGoogle Scholar
  131. 131.
    Represa, A., Robain, O., Tremblay, E., and Ben-Ari, Y. Hippocampal plasticity in childhood epilepsyNeurosci. Lett.99 (1989) 351–355.Google Scholar
  132. 132.
    Ribak, C.E. Epilepsy and the cortex, In: A. Peters (Ed.)Cerebral Cortex Vol. 9Plenum Press, New York (1991) pp. 427–483.Google Scholar
  133. 133.
    Rocamora, N., Palacios, J.M., and Mengod, G. Limbic seizures induce a differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, in the rat hippocampusMol. Brain Res.13 (1992) 27–33.PubMedGoogle Scholar
  134. 134.
    Russell, R.D. and Stripling, J.S. Effect of olfactory bulb kindling on evoked potentials in the piriform cortexBrain Research361 (1985) 61–69.Google Scholar
  135. 135.
    Sagar, H.J. and Osbury, J.M. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsionsAnn. Neurol.22 (1987) 334–340.PubMedGoogle Scholar
  136. 136.
    Sato, M., Racine, R.J., and McIntyre, D.C. Kindling: basic mechanisms and clinical validityElectroencephalgr. Clin. Neurophysiol76 (1990) 459–472.Google Scholar
  137. 137.
    Sazgar, M., Chick, B.A., Rashid, K., Van der Zee, C.E.E.M., Diamond, J., Fahnestock, M., and Racine, R.J. Role of nerve growth factor in kindling and kindling-induced mossy fiber sproutingSoc. Neurosci. Abstr.21 (1995) 1973.Google Scholar
  138. 138.
    Scharfman, H.E. EPSPs of dentate gyrus granule cells during epileptiform bursts of dentate hilar “mossy” cells and area CA3 pyramidal cells in disinhibited rat hippocampal slicesJ. Neurosci.14 (1994) 6041–6057.PubMedGoogle Scholar
  139. 139.
    Shin, C., McNamara, J.O., Morgan, J.L., Curran, T., and Cohen, D.R. Induction of c-fos mRNA expression by afterdischarge in the hippocampus of naive and kindled rats, J.Neuroschemistry55 (1990) 1050–1055.Google Scholar
  140. 140.
    Shirasaka, Y. and Wasterlain, C.G. Chronic epileptogenicity following focal status epilepticusBrain Research655 (1994) 33–44.PubMedGoogle Scholar
  141. 141.
    Schwob, J.E., Fuller, T., Price, J.L., and Olney, J.W. Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological studyNeuroscience5 (1980) 991–1014.PubMedGoogle Scholar
  142. 142.
    Scharfman, H.E. Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons, J.Neurophysiol74 (1995) 179–194.PubMedGoogle Scholar
  143. 143.
    Simonato, M., Hosford, D.A., Labiner, D.M., Shin, C., Mansbach, H.H., and McNamara, J.O. Differential expression of immediate early genes in the hippocampus in the kindling model of epilepsy.Molecular Brain Research 11 (1991) 115–124.Google Scholar
  144. 144.
    Sloviter, R.S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsyHippocampus1 (1991) 41–66.PubMedGoogle Scholar
  145. 145.
    Sloviter, R.S. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated ratsNeurosci. Lett.137 (1992) 91–96.PubMedGoogle Scholar
  146. 146.
    Sloviter, R.S. On the relationship between neuropathology and pathophysiology in the epileptic hippocampus of humans and experimental animalsHippocampus4 (1994) 250–253.PubMedGoogle Scholar
  147. 147.
    Sloviter, R.S. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy.Ann. Neurol.35 (1994) 640–654.PubMedGoogle Scholar
  148. 148.
    Sloviter, R.S. and Damiano, B.P. Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in ratsNeurosci. Lett.24 (1981) 279–284.PubMedGoogle Scholar
  149. 149.
    Sloviter, R. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsyScience235 (1987) 73–75.PubMedGoogle Scholar
  150. 150.
    Sloviter, R. Epileptic brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic and Golgi studyJ. Anat.10 (1983) 675–697.Google Scholar
  151. 151.
    Sperber, E.F., Haas, K.Z., Stanton, P.K., and Moshe, S.L. Resistance of the immature hippocampus to seizure-induced synaptic reorganizationDer. Brain Res60 (1991) 321–330.Google Scholar
  152. 152.
    Spiller, A. E. and Racine, R.J. The effect of kindling beyond the “stage 5” criterion on paired-pulse depression and hilar cell counts in the dentate gyrusBrain Research635 (1994) 139–147.PubMedGoogle Scholar
  153. 153.
    Sundstrom, L.E., Mitchell, J., and Wheal, H.V. Bilateral reorganization of mossy fibers in the rat hippocampus after a unilateral intracerebroventricular kainic acid injectionBrain Research609 (1993) 321–326.PubMedGoogle Scholar
  154. 154.
    Sutula, T., Cascino, G., Cavazos, J., Parada, I., and Ramirez, L. Mossy fiber synaptic reorganization in the epileptic human temporal lobeAnn. Neurol.26 (1989) 321–330.PubMedGoogle Scholar
  155. 155.
    Sutula, T., He, XX., Cavazos, J., and Scott, G. Synaptic reorganization in the hippocampus induced by abnormal functional activityScience239 (1988) 1147–1150.PubMedGoogle Scholar
  156. 156.
    Swanson, L.W., Wyss, J.M., and Cowan, W.M. An autoradiographic study of the organization of intrahippocampal association pathways in the ratJ Comp. Neurol.181 (1978) 681–710.PubMedGoogle Scholar
  157. 157.
    Swanson, L.W., Wawchenko, P.E., and Cowan, W.M. Evidence for collateral projections by neurons in Ammon’s horn, the dentate gyrus, and the subiculum: a multiple retrograde labelling study in the ratJ. Neurosci.1 (1981) 548–559.PubMedGoogle Scholar
  158. 158.
    Tanaka, T., Kondo, S., Hori, T., Tanaka, S., and Yonemasu, Y. Various hippocampal lesions induced by multi-fractional ibotenic acid injections and amygdala kindling in ratsBrain Research559 (1991) 154–158.PubMedGoogle Scholar
  159. 159.
    Tasker, J.G. and Dudek, E. Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsyNeurochemical Res16 (1991) 251–262.Google Scholar
  160. 160.
    Tauck, D.L. and Nadler, J.V. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid treated ratsJ. Neurosci.5 (1985) 1016–1022.PubMedGoogle Scholar
  161. 161.
    Titulaer, M.N.G., Kamphuis, W, Pool, C.W., van Heerikhuize, J.J., and Lopes da Silva, F.H. Kindling induces time-dependent and regional specific changes in the [3H]muscimol binding in the rat hippocampus: a quantitative autoradiographic studyNeuroscience59 (1994) 817–826.PubMedGoogle Scholar
  162. 162.
    Tsunoda, K., Mori, N., Osonoe, M., Ariga, K., Saitoh, H., Kittaka, H., and Ogata, S-I. Different effect of hippocampal granule cell destruction on amydgaloid kindling in Sprague-Dawley and Wistar ratsBrain Research691 (1995) 18–24.PubMedGoogle Scholar
  163. 163.
    Tuff, L.P., Racine, R.J., and Adamec, R. The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat: I. Paired pulse depressionBrain Research277 (1983) 79–90.PubMedGoogle Scholar
  164. 164.
    Turski, L., Cavalheiro, E.A., Sieklucka-Dziuba, M., Ikonomidou-Turski, C., Czuczwar, S.J., and Turski, W.A. Seizures produced by pilocarpine: neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrainBrain Research398 (1986) 37–48.PubMedGoogle Scholar
  165. 165.
    Uruno, K., O’Connor, M.J., and Masukawa, L.M. Effects of bicuculline and baclofen on paired-pulse depression in the dentate gyrus of epileptic patientsBrain Research695 (1995) 163–172.PubMedGoogle Scholar
  166. 166.
    Van der Zee, C.E.E.M., Rashid, K., Le, K., Moore, K-A., Stanisz, J., Diamond, J., Racine, R.i, and Fahnestock, M. Intraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult ratsJ Neuroscience15 (1995) 5316–5323.Google Scholar
  167. 167.
    Vicedomini, J.P. and Nadler, J.V. A model of status epilepticus based on electrical stimulation of hippocampal afferent pathwaysExp. Neurol.96 (1987) 681–691.PubMedGoogle Scholar
  168. 168.
    Wenzel, H.J., Buckmaster, PS., Kunkel, D.D., Anderson, N.L., and Schwartzkroin, P.A. Electron microscopic analysis of rat hippocampal mossy cell axon: synaptic relationship with postsynaptic neuronsSoc. Neurosci. Abstra.20 (1994) 350.Google Scholar
  169. 169.
    Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H., and Lindholm, D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptorsEMBO J9 (1990) 3545–3550.PubMedGoogle Scholar
  170. 170.
    Zhao, D. and Leung, L.S. Effects of hippocampal kindling on paired-pulse response in CAl in vitroBrain Research564 (1991) 220–229.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ronald J. Racine
    • 1
  • Beth Adams
    • 1
  • Philip Osehobo
    • 2
  • Margaret Fahnestock
    • 2
  1. 1.Department of PsychologyMcMaster UniversityHamiltonCanada
  2. 2.Department of Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations