Advertisement

Functional Properties of Human Neocortical Neurons

A Window on the Physiopathogenesis of Seizures in Patients with Cortical Dysplasia
  • Massimo Avoli
  • Donatella Mattia
  • Andre Olivier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 497)

Abstract

Knowledge of the fundamental mechanisms underlying epileptiform discharge has been greatly advanced by the use ofin vitropreparations, such as cultured and acutely dissociated neurons or brain slices (see17). In particular, thein vitrobrain-slice preparation has made it possible to study at cellular, pharmacological and molecular levels neurons and glial cells that retain their original connections. The relevance of the mechanisms discovered in animal models for understanding the physiopathogenesis of human epileptic syndromes, however, depends on the demonstration that such mechanisms do occur in the human condition as well.

Keywords

Temporal Lobe Epilepsy Epileptiform Activity Focal Cortical Dysplasia Cortical Dysplasia Epileptiform Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avoli, M. Synaptic activation of GABAAreceptors causes a depolarizing potential under physiological conditions in rat hippocampal pyramidal cellsEur. Neurosci.,4 (1992) 16–26.CrossRefGoogle Scholar
  2. 2.
    Avoli, M. Electrophysiology and pharmacology of human neocortex and hippocampus in vitro. In: P.A. Schwartzkroin (Ed.)Epilepsy: Models Mechanisms and ConceptsCambridge University Press, Cambridge (1993) pp. 244–280.CrossRefGoogle Scholar
  3. 3.
    Avoli, M., Hwa, G.G.C., and Lacaille, J.-C. Electrophysiological and repetitive firing properties of neurons in the superficial/middle layers of the human neocortexExp. Brain. Res.98 (1994) 135–144.PubMedCrossRefGoogle Scholar
  4. 4.
    Avoli, M., Mattia, D., Siniscalchi, A., Perreault, P., and Tomaiuolo, F. Pharmacology and electrophysiology of a synchronous GABA-mediated potential in the human neocortexNeuroscience62 (1994) 655–666.PubMedCrossRefGoogle Scholar
  5. 5.
    Avoli, M. and Olivier, A. Electrophysiological properties and synaptic responses in the deep layers of the human epileptogenic neocortex maintained “in vitro”, JNeurophysiol.61 (1989) 589–606.Google Scholar
  6. 6.
    Avoli, M., Perreault, P., Olivier, A., and Villemure, J.G. 4-Aminopyridine induces a long-lasting depolarizing GABAergic potential in human neocortical and hippocampal neurons maintainedin vitro Neurosci. Lett.94 (1988) 327–332.PubMedCrossRefGoogle Scholar
  7. 7.
    Avoli, M. and Williamson, A. Functional and pharmacological properties of human neocortical neurons maintained in vitroProg. Neurobiol.48 (1996) 519–554.PubMedCrossRefGoogle Scholar
  8. 8.
    Calvin, W.H. and Sypert, G.W. Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat, JNeurophysiol.39 (1976) 420–434.PubMedGoogle Scholar
  9. 9.
    Gambardella, A., Palmini, A., Dubeau, E, Andermann, E, Costa da Costa, J., Andermann, E., and Quesney, L.F. Electroencephalographic patterns in epileptic patients with neuronal migration disordersEpilepsia34 (1993) 127.Google Scholar
  10. 10.
    Hwa, G.G.C., Avoli, M., Oliver, A., and Villemure, J.G. Bicuculline-induced epileptogenesis in the human neocortex maintainedin vitro Exp. Brain. Res.83 (1991) 329–339.PubMedCrossRefGoogle Scholar
  11. 11.
    Knowles, W.D., Luders, H., Hahn, J.F., and Awad, I.A. In vitro intracellular recordings from epileptic human neocortex and hippocampusEpilepsia29 (1988) 711.Google Scholar
  12. 12.
    Mattia, D., Olivier, A., and Avoli, M. Seizure-like discharges recorded in the human dysplastic neocortex maintainedin vitro Neurology45 (1995) 1391–1395.PubMedCrossRefGoogle Scholar
  13. 13.
    McCormick, D.A. GABA as an inhibitory neurotransmitter in human cerebral cortexJ. Neurophysiol62 (1989) 1018–1027.PubMedGoogle Scholar
  14. 14.
    McCormick, D.A., Connors, B.W., Lighthall, J.W, and Prince, D.A. Comparative elctrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, JNeurophysiol.54 (1985) 782–806.Google Scholar
  15. 15.
    Palmini, A., Andermann, F., Tampieri, D., Andermann, E., Robitaille, Y., and Olivier, A. Epilepsy and cortical cytoarchitectonic abnormalities: an attempt at correlating basic mechanisms with antomoclinical syndromes. In: J., Jr. Engel, C. Wasterlain, E.A. Cavalheiro, U. Heineman, and G. Avanzini (Eds.)Molecular Neurobiology of EpilepsyElsevier, Amsterdam (1992) pp. 19–30.Google Scholar
  16. 16.
    Sarnat, H.B. Cerebral dysplasias as expressions of altered maturational processesCan. J. Neurol. Sci.18 (1991) 196–204.PubMedGoogle Scholar
  17. 17.
    Schwartzkroin, P.A.Epilepsy: Models Mechanisms and ConceptsCambridge University Press, Cambridge (1993).CrossRefGoogle Scholar
  18. 18.
    Schwartzkroin, PA., Turner, D.A., Knowles, W.D., and Wyler, A.R. Studies of human and monkey “epileptic” neocortex in thein vitroslice preparation,Ann. Neurol., 13 (1983) 249–257.PubMedCrossRefGoogle Scholar
  19. 19.
    Taylor, D.C., Falconer, M.A., Bruton, C.J., and Corsellis, J.A. Focal dysplasia of the cerebral cortex in epilepsy, J. xNeurol. Neurosurg. Psychiatry34 (1971) 369–387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Massimo Avoli
    • 1
  • Donatella Mattia
    • 1
  • Andre Olivier
    • 1
  1. 1.Cell Biology of Excitable Tissue Research Group Montreal Neurological Institute and Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada

Personalised recommendations