Advertisement

Coronavirus Derived Expression Systems

Progress and problems
  • Luis Enjuanes
  • Isabel Sola
  • Fernando Almazan
  • Ander Izeta
  • Jose M. Gonzalez
  • Sara Alonso
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 494)

Abstract

Coronaviruses have several advantages to be used as vectors over other viral expression systems: (i) coronaviruses are single-stranded RNA viruses that replicate within the cytoplasm without a DNA intermediary, making unlikely the integration of the virus genome into the host cell chromosome; (ii) these viruses have the largest RNA genome known having in principle room for the insertion of large foreign genes; (iii) since coronaviruses in general infect the mucosal surfaces, both respiratory and enteric, they may be used to induce a strong secretory immune response; (iv) the tropism of coronaviruses may be modified by the manipulation of the spike (S) protein allowing the engineering of the tropism of the vector; and, (v) non-pathogenic Coronavirus strains infecting most species of interest are available to develop expression systems.

Keywords

Human Immunodeficiency Virus Type Bacterial Artificial Chromosome Core Sequence Helper Virus Sindbis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasiev, B. N., Ward, T. W., Beaty, B. J., and Carlson, J. O., 1999, Transduction of Aedes aegypti mosquitoes with vectors derived from Aedes densovirus. Virology 257:62–72.PubMedCrossRefGoogle Scholar
  2. Agapov, E. V., Frolov, I., Lindenbach, B. D., Pragai, B. M., Schlesinger, S., and Rice, C. M., 1998, Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc. Natl. Acad. Sci. USA 95:12989–12994.PubMedCrossRefGoogle Scholar
  3. Almazan, F., González, J. M., Pénzes, Z., Izeta, A., Calvo, E., Plana-Durán, J., and Enjuanes, L., 2000, Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. USA 97:5516–5521.PubMedCrossRefGoogle Scholar
  4. Alonso, S., Izeta, A., Sola, I., and Enjuanes, L., 2000a, Transcription regulatory sequences in transmissible gastroenteritis Coronavirus. Submitted.Google Scholar
  5. Alonso, S., Sola, I., Wege, H., Teifke, J., and Enjuanes, L., 2000b, Heterologous gene expression in tissue culture and in vivo using a transmissible gastroenteritis Coronavirus helper dependent system. Submitted.Google Scholar
  6. Baric, R. S., and Yount, B., 2000, Subgenomic negative-strand RNA function during mouse hepatitis virus infection. J. Virol. 74:4039–4046.PubMedCrossRefGoogle Scholar
  7. Bett, A. J., Prevec, L., and Graham, F. L., 1993, Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67:5911–5921.PubMedGoogle Scholar
  8. Boyer, J. C., Bebenek, K., and Kunkel, T. A., 1992, Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates. Proc. Natl. Acad Sci. USA 89:6919–6923.PubMedCrossRefGoogle Scholar
  9. Bredenbeek, P. J., and Rice, C. M., 1992, Animal RNA virus expression systems. Semin. Virol. 3:297–310.Google Scholar
  10. Caley, I. J., Betts, M. R., Irlebeck, D. M., Davis, N. L., Swanstrom, R., Frelinger, J. A., and Johnston, R. E., 1997, Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J. Virol. 71:3031–3038.PubMedGoogle Scholar
  11. de Haan, C. A. M., Kuo, L., Masters, P. S., Vennema, H., and Rottier, P. J. M., 1998, Coronavirus particle assembly: primary structure requirements of the membrane protein. J. Virol. 72:6838–6850.PubMedGoogle Scholar
  12. de Mercoyrol, L., Corda, Y., Job, C., and Job, D., 1992, Accuracy of wheat-germ RNA Polymerase II. General enzymatic properties and effect of template conformational transition from right-handed B-DNA to left-handed Z-DNA. Eur. J. Biochem. 206:49–58.PubMedCrossRefGoogle Scholar
  13. DiCiommo, D. P., and Bremner, R., 1998, Rapid, high level protein production using DNA-based Semliki Forest virus vectors. J. Biol Chem. 17:18060–18066.CrossRefGoogle Scholar
  14. Dubensky, T. W., Driver, D. A., Polo, J. M., Belli, B. A., Latham, E. M., Ibanez, C. E., Chada, S., Brumm, D., Banks, T. A., Mento, S. J., Jolly, D. J., and Chang, S. M. W., 1996, Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J. Virol. 70:508–519.PubMedGoogle Scholar
  15. Fischer, F., Stegen, C. F., Koetzner, C. A., and Masters, P. S., 1997, Analysis of a recombinant mouse hepatitis virus expressing a foreign gene reveals a novel aspect of Coronavirus transcription. J. Virol. 71:5148–5160.PubMedGoogle Scholar
  16. Fisher, J., and Goff, S. P., 1998, Mutational analysis of stem-loops in the RNA packaging signal of the Moloney murine leukemia virus. Virology 244:133–145.PubMedCrossRefGoogle Scholar
  17. Izeta, A., Sánchez, C. M., Smerdou, C., Méndez, A., Alonso, S., Balasch, M., Plana-Durán, J., and Enjuanes, L., 1998, The spike protein of transmissible gastroenteritis Coronavirus controls the tropism of pseudorecombinant virions engineered using synthetic minigenomes. Adv. Exp. Med. Biol. 440:207–214.PubMedCrossRefGoogle Scholar
  18. Izeta, A., Smerdou, C., Alonso, S., Penzes, Z., Méndez, A., Plana-Durán, J., and Enjuanes, L., 1999, Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. J. Virol. 73: 1535–1545.PubMedGoogle Scholar
  19. Jeong, Y. S., Repass, J. F., Kim, Y.-N., Hwang, S.-M., and Makino, S., 1996, Coronavirus transcription mediated by sequences flanking the transcription consensus sequence. Virology 217:311–322.PubMedCrossRefGoogle Scholar
  20. Joo, M., and Makino, S., 1992, Mutagenic analysis of the Coronavirus intergenic consensus sequence. J. Virol. 66:6330–6337.PubMedGoogle Scholar
  21. Joo, M., and Makino, S., 1995, The effect of two closely inserted transcription consensus sequences on Coronavirus transcription. J. Virol. 69:272–280.PubMedGoogle Scholar
  22. Krishnan, R., Chang, R. Y., and Brian, D. A., 1996, Tandem placement of a Coronavirus promoter results in enhanced mRNA synthesis from the downstream-most initiation site. Virology 218:400–405.PubMedCrossRefGoogle Scholar
  23. Lai, M. M. C., 1996, Recombination in large RNA viruses: coronaviruses. Semin. Virol. 7:381–388.CrossRefGoogle Scholar
  24. Lai, M. M. C., 1998, Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12.PubMedCrossRefGoogle Scholar
  25. Lai, M. M. C., Zhang, X., Hinton, D., and Stohlman, S., 1997, Modulation of mouse hepatitis virus infection by defective-interfering RNA-mediated expression of viral proteins and cytokines. J. Neurovirol. 3:(Supp. 1) S33–S34.PubMedGoogle Scholar
  26. Leparc-Goffart, I., Hingley, S. T., Chua, M. M., Phillips, J., Lavi, E., and Weiss, S. R., 1998, Targeted recombination within the spike gene of murine Coronavirus mouse hepatitis virus-A59: Q159 is a determinant of hepatotropism. J. Virol. 72:9628–9636.PubMedGoogle Scholar
  27. Li, H.-P., Huang, P., Park, S., and Lai, M. M. C., 1999, Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitits virus and serves as a regulator of viral transcription. J. Virol. 73:772–777.PubMedGoogle Scholar
  28. Li, H.-P., Zhang, X., Duncan, R., Comai, L., and Lai, M. M. C., 1997, Heterogeneous nuclear ribonucleoprotein Al binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc. Natl. Acad. Sci. USA 94:9544–9549.PubMedCrossRefGoogle Scholar
  29. Liao, C. L., Zhang, X., and Lai, M. M. C., 1995, Coronavirus defective-interfering RNA as an expression vector: the generation of a pseudorecombinant mouse hepatitis virus expressing hemagglutinin-esterase. Virology 208:319–327.PubMedCrossRefGoogle Scholar
  30. Liljeström, P., and Garoff, H., 1991, A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9:1356–1361.PubMedCrossRefGoogle Scholar
  31. Lin, Y. J., and Lai, M. M. C., 1993, Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontiguous sequence for replication. J. Virol. 67:6110–6118.PubMedGoogle Scholar
  32. Makino, S., and Joo, M., 1993, Effect of intergenic consensus sequence flanking sequences on Coronavirus transcription. J. Virol. 67:3304–3311.PubMedGoogle Scholar
  33. Makino, S., Joo, M., and Makino, J. K., 1991, A system for study of Coronavirus messenger RNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J. Virol. 65:6031–6041.PubMedGoogle Scholar
  34. Masters, P. S., 1999, Reverse genetics of the largest RNA viruses. Adv. Virus Res. 53:245–264.PubMedCrossRefGoogle Scholar
  35. Méndez, A., Smerdou, C., Izeta, A., Gebauer, F., and Enjuanes, L., 1996, Molecular characterization of transmissible gastroenteritis Coronavirus defective interfering genomes: packaging and heterogeneity. Virology 217:495–507.PubMedCrossRefGoogle Scholar
  36. Molenkamp, R., Rozier, B. C. D., Greve, S., Spaan, W. J. M., and Snijder, E. J., 2000, Isolation and characterization of an arterivirus defective interfering RNA genome. J. Virol. 74:3156–3165.PubMedCrossRefGoogle Scholar
  37. Parks, R. J., and Graham, F. L., 1997, A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J. Virol. 71:3293–3298.PubMedGoogle Scholar
  38. Penzes, Z., Tibbies, K., Shaw, K., Britton, P., Brown, T. D. K., and Cavanagh, D., 1994, Characterization of a replicating and packaged defective RNA of avian Coronavirus infectious bronchitis virus. Virology 203:286–293.PubMedCrossRefGoogle Scholar
  39. Penzes, Z., Wroe, C., Brown, T. D. K., Britton, P., and Cavanagh, D., 1996, Replication and packaging of Coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame. J. Virol. 70:8660–8668.PubMedGoogle Scholar
  40. Sánchez, C. M., Izeta, A., Sánchez-Morgado, J. M., Alonso, S., Sola, I., Balasch, M., Plana-Durán, J., and Enjuanes, L., 1999, Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis Coronavirus is a determinant of its enteric tropism and virulence. J. Virol. 73:7607–7618.PubMedGoogle Scholar
  41. Sawicki, S. G., and Sawicki, D. L., 1990, Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J. Virol. 64:1050–1056.PubMedGoogle Scholar
  42. Sethna, P. B., Hung, S.-L., and Brian, D. A., 1989, Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc. Natl. Acad. Sci. USA 86:5626–5630.PubMedCrossRefGoogle Scholar
  43. Sola, I., Izeta, A., González, J. M., and Enjuanes, L., 2000, Tissue specific expression into the mucosal surface using a single genome vector based on recombinant coronaviruses. Submitted.Google Scholar
  44. Stirrups, K., Shaw, K., Evans, S., Dalton, K., Casais, R., Cavanagh, D., and Britton, P., 2000, Expression of reporter genes from the Coronavirus infectious bronchitis virus defective RNA CD-61. J. Gen. Virol. In press: 000-000.Google Scholar
  45. Thiel, V., Siddell, S. G., and Herold, J., 1998, Replication and transcription of HCV 229E replicons. Adv. Exp. Med. Biol. 440:109–114.PubMedCrossRefGoogle Scholar
  46. van der Most, R. G., De Groot, R. J., and Spaan, W. J. M., 1994, Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of Coronavirus transcription initiation. J. Virol. 68:3656–3666.PubMedGoogle Scholar
  47. van der Most, R. G., and Spaan, W. J. M., 1995, Coronavirus replication, transcription, and RNA recombination. In “The Coronaviridae” (S. G. Siddell, Ed.), pp. 11–31. Plenum Press, New York.Google Scholar
  48. van Marie, G., Dobbe, J. C., Gultyaev, A. P., Luytjes, W., Spaan, W. J. M., and Snijder, E. J., 1999, Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc. Nat. Acad. Sc. USA 96:12056–12061.CrossRefGoogle Scholar
  49. van Marie, G., Luytjes, W., Van der Most, R. G., van der Straaten, T., and Spaan, W. J. M., 1995, Regulation of Coronavirus mRNA transcription. J. Virol. 69: 7851–7856.Google Scholar
  50. Zhang, X., Hinton, D. R., Cua, D. J., Stohlman, S. A., and Lai, M. M. C., 1997, Expression of interferon-γ by a Coronavirus defective-interfering RNA vector and its effect on viral replication, spread, and pathogenicity. Virology 233:327–338.PubMedCrossRefGoogle Scholar
  51. Zhang, X., Hinton, D. R., Park, S., Parra, B., Liao, C.-L., and Lai, M. M. C., 1998, Expression of hemagglutinin/esterase by a mouse hepatitis virus Coronavirus defective-interfering RNA alters viral pathogenesis. Virology 242:170–183.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Luis Enjuanes
    • 1
  • Isabel Sola
    • 1
  • Fernando Almazan
    • 1
  • Ander Izeta
    • 1
  • Jose M. Gonzalez
    • 1
  • Sara Alonso
    • 1
  1. 1.Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell BiologyCampus Universidad AutónomaCantoblancoMadridSpain

Personalised recommendations