Skip to main content

Mg2+-Dependent Atpase Activity in Cardiac Myofibrils from The Insulin-Resistant JCR:La-Cp Rat

  • Chapter
Diabetes and Cardiovascular Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 498))

Abstract

There is a great deal of information presently available documenting a cardiomyopathic condition in insulin-deficient models of diabetes. Less information is available documenting a similar status in non insulin-dependent models of diabetes. We have studied the functional integrity of the myofibrils isolated from hearts of JCR:LA rats. The JCR:LA rat is hyperinsulinemic, hyperlipidemic, glucose intolerant and obese. As such, it carries many of the characteristics found in humans with non insulin-dependent diabetes mellitus. These animals also have many indications of heart disease. However, it is not clear if the hearts suffer from vascular complications or are cardiomyopathic in nature. We examined Mg2+ - dependent myofibrillar ATPase in hearts of JCR:LA-cp/cp rats and their corresponding control animals (+/?) and found no significant differences (P> 0.05). This is in striking contrast to the depression in this activity exhibited by cardiac myofibrils isolated from insulin-deficient models of diabetes. Our data demonstrate that myofibrillar functional integrity is normal in JCR:LA-cp rats and suggest that these hearts are not in a cardiomyopathic state. Insulin status may be critical in generating a cardiomyopathic condition in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barany, M., ATPase activity of myosin correlated with speed of muscle shortening, J.Gen.Physiol., 50, 197, 1967.

    Article  PubMed  Google Scholar 

  2. Belcastro A.N., J.S. Gilchrist, and J.A. Scrubb, G. Arthur. Calcium-supported calpain degradation rates for cardiac myofibrils in diabetes. Mol Cell Biochem 135:51–60, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Cross, H.R., L.H. Opie, G.K. Radda, and K. Clarke. Is high glycogen content beneficial or detrimental to the ischemic heart? Circ.Res. 78:482–491,1996.

    Article  PubMed  CAS  Google Scholar 

  4. Czubryt, M.P., B. Ramjiawan, J.S.C. Gilchrist and G.N. Pierce. The presence and partitioning of calcium binding proteins in hepatic and cardiac nuclei. J Mol Cell Cardiol 28: 455–465, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Dhalla N.S., G.N. Pierce, I.R. Inns and R.E. Beamish. Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1:263–281, 1985.

    PubMed  CAS  Google Scholar 

  6. Dillmann, W.H. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 29:579–582, 1980.

    PubMed  CAS  Google Scholar 

  7. Dillmann, W.H. Fructose feeding increases Ca++-activated myosin ATPase activity and changes myosin isoenzyme distribution in the diabetic rat heart. Endocrinology 114: 1678–1685, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Dillmann, W.H. Influence of thyroid hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the heart of diabetic rats. Metabolism 31: 199–204, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Dolphin P.J., R.M. Amy, and J.C. Russell: Effect of age on serum lipids and lipoproteins of male and female JCR:LA-corpulent rats. Biochim Biophys Acta 1042:99–106, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Fein F.S. and E.H. Sonnenblick. Diabetic cardiomyopathy. Prog. Cardiovasc. Dis. 27: 255–270, 1985.

    Google Scholar 

  11. Fein,F.S., J.E. Strobeck, A.Malhotra, J. Scheuer, and E.H. Sonnenblick. Reversibility of diabetic cardiomyopathy with insulin in rats. Circ.Res. 49:1251–1261,1981.

    Article  Google Scholar 

  12. Ganguly, P.K., G.N. Pierce, K.S. Dhalla and N.S. Dhalla. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am. J. Physiol. 244:E528–E535, 1983.

    Google Scholar 

  13. Gilchrist, J.S.C. and G.N. Pierce. Identification and purification of a calcium-binding protein in hepatic nuclear membranes. J Biol Chem 268: 4291–4299, 1993.

    PubMed  CAS  Google Scholar 

  14. Kannel W.B., McGee D.L. Diabetes and cardiovascular risk factors. The Framingham Study. Circulation 1979;59:8–13.

    Article  PubMed  CAS  Google Scholar 

  15. Lopaschuk G.D. and J.C. Russell. Myocardial function and energy substrate metabolism in the insulin-resistant JCR:LA corpulent rat. J Appl Physiol 71:1302–1308, 1991.

    Google Scholar 

  16. MacLean I.M., R.V. Rajotte, and A.N. Belcastro. Insulin and islet cell transplants: effects on diabetic rat cardiac myofibril ATPase. Am J Physiol 252:E244–E247, 1987.

    PubMed  CAS  Google Scholar 

  17. Maddaford T.G., J.C. Russell, and G.N. Pierce. Postischemic cardiac performance in the insulin-resistant JCR:LA-cp rat. Am J Physiol 273:H1187–H1192, 1997.

    PubMed  CAS  Google Scholar 

  18. Malhotra A, J.P. Mordes, L. McDermott, and T.F. Schaible. Abnormal cardiac biochemistry in spontaneously diabetic Bio-Breeding/Worcester rat. Am J Physiol 249:H1051–H1059, 1985.

    PubMed  CAS  Google Scholar 

  19. Malhotra A, S. Penpargkul, F.S. Fein, E.H. Sonnenblick, and J. Scheuer. The effect of streptozotocininduced diabetes in rats on cardiac contractile proteins. Circ Res 49:1243–1250, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Misra, T., J.S.C. Gilchrist, J. C. Russell, and G. N. Pierce. Cardiac myofibrillar andsarcoplasmic reticulum function are not depressed in insulin-resistant JCR:LA-cp rat. Am J Physiol. 276 (Heart Circ.Physiol. 45):H1811–H1817, 1999.

    PubMed  CAS  Google Scholar 

  21. Penpargkul, S, F. Fein, E.H. Sonnenblick and J. Scheuer. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 13:303–309, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Pierce G.N., R.E. Beamish and N.S. Dhalla. Heart Dysfunction in Diabetes, Boca Raton, FL, CRC Press, 1988, p.1–245

    Google Scholar 

  23. Pierce G.N. and N.S. Dhalla. Mechanisms of the defect in myofibrillar function during diabetes. Am J Physiol 248:E170–E175, 1985.

    PubMed  CAS  Google Scholar 

  24. Pierce G.N. and N.S. Dhalla. Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol 13: 1063–1069, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Pierce G.N., Dhalla N.S. Mitochondrial abnormalities in diabetic cardiomyopathy. Can J Cardiol;1:4854, 1985.

    Google Scholar 

  26. Pierce, G.N., P.K. Ganguly, A. Dzurba and N.S. Dhalla. Modification of the function of cardiac subcellular organelles by insulin. In: Advances in Myocardiology, edited by N.S. Dhalla and D.J. Hearse, 1985, p. 113–125.

    Google Scholar 

  27. Pierce G.N., M.K. Lockwood, and C.D. Eckhert. Cardiac contractile protein ATPase activity in a diet induced model of noninsulin dependent diabetes mellitus. Can. J. Cardiol. 5: 117–120, 1989.

    Google Scholar 

  28. Pierce, G.N., T.G. Maddaford and J.C. Russell. Cardiovascular dysfunction in insulin-dependent and non-insulin-dependent animal models of diabetes mellitus. Can. J. Physiol. Pharmacol. 75: 343350, 1997.

    Google Scholar 

  29. Pollack, P.S., A. Malhotra, F.S. Fein, and J. Scheuer. Effects of diabetes on cardiac contractile proteins in rabbits and reversal with insulin. Am J Physiol 251: H448–H454, 1986.

    Google Scholar 

  30. Redaelli, G., A. Malhotra, B. Li, P. Li, E. H. Sonnenblick, P. A. Hofmann and P. Anversa. Effects of constitutive overexpression of insulin-like growth factor-1 on the mechanical characteristics and molecular properties of ventricular myocytes. Circ Res. 82:594–603, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Regan T.J. Congestive heart failure in the diabetic. Annu Rev Med 34:161–168, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Rodrigues, B., M.C. Cam and J.H. McNeill. Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J. Mol. Cell Cardiol. 27:169–179, 1995.

    Article  PubMed  CAS  Google Scholar 

  33. Rupp H., V. Elimban, and N.S. Dhalla. Modification of myosin isozymes and SR Ca (2)-pump ATPase of the diabetic rat heart by lipid-lowering interventions. Mol Cell Biochem 132:69–80, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Russell J.C., S.K. Ahuja, V. Manickavel, R.V. Rajotte, and R.M. Amy. Insulin resistance and impaired glucose tolerance in the atherosclerosis-prone LA/N corpulent rat. Arteriosclerosis 7:620–626, 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Russell J.C. and R.M. Amy. Early atherosclerotic lesions in a susceptible rat model: the LAN-corpulent rat. Atherosclerosis 60:119–129, 1986.

    Article  PubMed  CAS  Google Scholar 

  36. Russell J.C., D.G. Koeslag, P.J. Dolphin and R.M. Amy. Prevention of myocardial lesions in JCR:LAcorpulent rats by nifedipine. Arteriosclerosis 10:658–664, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Schaffer, S.W., M.S. Mozaffari, M. Artman and G.L. Wilson. Basis for myocardialmechanical defects associated with non-insulin-dependent diabetes. Am J Physiol 256:E25–E30, 1989.

    PubMed  CAS  Google Scholar 

  38. Scheuer, J. and A.K. Bhan. Cardiac contractile proteins: Adenosine triphosphatase activity and physiological function. Circ Res 45: 1–12, 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Takeda, N., I.M.C. Dixon, T. Hata, V. Elimban, K.R. Shah and N. S. Dhalla. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Diabetes Res. Clin. Pract. 30:S113–S122, 1996.

    Article  Google Scholar 

  40. Yu, Z., G. F. Tibbits and J. H. McNeill. Cellular functions of diabetic cardiomyocytes: contractility, rapid-cooling contracture, and ryanodine binding. Am. J. Physiol. 266: H2082–H2089, 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Misra, T., Russell, J.C., Clark, T.A., Pierce, G.N. (2001). Mg2+-Dependent Atpase Activity in Cardiac Myofibrils from The Insulin-Resistant JCR:La-Cp Rat. In: Angel, A., Dhalla, N., Pierce, G., Singal, P. (eds) Diabetes and Cardiovascular Disease. Advances in Experimental Medicine and Biology, vol 498. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1321-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1321-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5496-3

  • Online ISBN: 978-1-4615-1321-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics