Skip to main content

Ketosis and the Generation of Oxygen Radicals in Diabetes Mellitus

  • Chapter
Diabetes and Cardiovascular Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 498))

Abstract

The long-term complications of diabetes remain a major public health issue. Over the last decade, many of the biochemical pathways by which hyperglycemia may cause cellular damage have been studied. These include increased polyol pathway and associated changes in intracellular redox state, increased diacylglycerol synthesis with consequent activation of specific protein kinase C isoforms, increased nonenzymatic glycation of both intra-and extracellular proteins, and increased oxidative stress (111). Tissue injury then results from acute changes in protein function and chronic changes in protein expression. However, the molecular pathophysiology of altered membrane function and gene expression leading to tissue injury is still unclear. Type 1 diabetics frequently experience ketosis (hyperketonemia) because, in a state of insulin deficiency, body fuel is derived mainly from fat (12). The blood concentration of ketone bodies may reach 10 mM in diabetics with severe ketosis, compared with concentrations of less than 0.5 mM in normal individuals (12). It is known that ketosis can accelerate microangiopathy and underlying vascular disease and precipitate neuropathy in patients with long-duration diabetes (12). However, the underlying mechanisms by which ketosis promotes vascular disease in type 1 diabetic patients are unclear This chapter is focussed on the mechanisms that underlie the accelerated vascular disease and mortality in diabetic patients. To better differentiate among the complex interactions of various cell types, hormones and dynamic changes in the blood, we have used a cell culture model to accomplish the stated objectives. Specifically, this review discusses whether ketosis increases cellular oxidative stress/damage, and thereby promotes cell surface changes and adhesion between the monocytes and endothelial cells, a crucial step in the pathogenesis of vascular disease in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DCCT Research Group. The absence of a glycemic threshold for the development of long-term complications: The perspective of the diabetes control and complications trial. Diabetes 45:1289 (1996).

    Article  Google Scholar 

  2. S.M. Strowig and P. Raskin. Glycemic control and the complications of diabetes. Diab Rev 3:237 (1995).

    Google Scholar 

  3. A. Ceriello, R. Giacomello, G. Stel, E. Motz, C. Taboga, L. Tonutti, M. Pirisi, E. Falleti and E. Bartoli. Hyperglycemia-induced thrombin formation in diabetes. The possible role of oxidative stress. Diabetes 44:924 (1995).

    CAS  Google Scholar 

  4. B. Tesfamariam and R.A. Cohen. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Amer J Physiol 262:H321 (1992).

    Google Scholar 

  5. J.W. Baynes. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. S.K. Jain, S.K. Krueger, R. McVie, J.J. Jaramillo, M. Palmer, and T. Smith. Relationship of blood thromboxane-B2 with lipid peroxides and effect of vitamin E and placebo supplementation on TxB2 and lipid peroxide levels in Type-1 diabetic patients. Diab Care 21:1511 (1998).

    CAS  Google Scholar 

  7. D. Koya, and G.L. King. Protein kinase C activation and the development of diabetic complications. Diabetes 47:859 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. C.J. Mullarkey, D. Edelstein, and M. Brownlee. Free radical generation by early glycation products: A mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173:932 (1990).

    Article  PubMed  Google Scholar 

  9. R. Klein. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diab Care 18:258 (1995).

    Article  CAS  Google Scholar 

  10. S.K. Jain, Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 264:21340 (1989).

    PubMed  CAS  Google Scholar 

  11. S.K. Jain, R. McVie, J. Duett, and J.J. Herbst: Erythrocyte membrane lipid peroxidation andglycosylated hemoglobin in diabetes. Diabetes 38:1539 (1989).

    Article  PubMed  Google Scholar 

  12. S.K. Jain and R. McVie. Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type-1 diabetic patients. Diabetes 48:1850 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. S.K. Jain, K. Kannan, and G. Lim. Ketosis (acetoacetate) can generate oxygen radicals and cause increased lipid peroxidation and growth inhibition in human endothelial cells. Free Radical Biol Med 25:1083 (1998).

    Article  CAS  Google Scholar 

  14. S.K. Jain, K. Kannan, and R. McVie. Effect of hyperketonemia on blood monocyttes in type-1 diabetic patients and apoptosis in cultured U937 monocytes. Antioxidants & Redox Signaling 1:211 (1999).

    Article  CAS  Google Scholar 

  15. E. Yang and S.J. Korsmeyer. Molecular thanatopsis: a discourse on the Bc1–2 family and cell death. Blood 88:386 (1996).

    PubMed  CAS  Google Scholar 

  16. S.J. Korsmeyer, X. Yin, Z.N. Oltvai, D.J. Veis-Novack, and G.P. Linette. Reactive oxygen species and the regulation of cell death by the Bc1–2 gene family. Biochim Biophys Acta 1271:63 (1995).

    Article  PubMed  Google Scholar 

  17. K. Banki, E. Hutter, N.J. Gonchoroff, and A. Perl. Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently form activation of caspases in fas signaling. J Immunol 162:1466 (1999).

    PubMed  CAS  Google Scholar 

  18. R.K. Wali, S. Jafe, D. Kumar, N. Sorgenete, and V.K. Kalra. Increased adherence of oxidant-treated human and bovine erythrocytes to cultured endothelial cells. J Cell Physiol 133:25 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. S.K. Jain. The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes. J Biol Chem 259:3391 (1984).

    PubMed  CAS  Google Scholar 

  20. S.K. Jain. In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. J Clin Invest 76:281 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. A.M. Gardner, F.H. Xu, C. Fady, F.J. Jacoby, D.C. Duffey, Y. Tu, and A. Lichtenstein. Apoptotic vs nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Rad Biol Med 22:73 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. V. Rattan, C. Sultana, Y. Shen, and V.K. Kalra. Oxidant stress-induced transendothelial migration of monocytes is linked to phosphorylation of PECAM-1. Amer J Physiol 273:E453 (1997).

    PubMed  CAS  Google Scholar 

  23. J.W. Larrick, and S.C. Wright. Cytotoxic mechanism of tumor necrrosis factor-alpha. FASEB J 4: 3215 (1990).

    PubMed  CAS  Google Scholar 

  24. S.K. Jain, N. Mohandas, M.R. Clark, and S.B. Shohet. The effect of malonyldialdehyde, a product of lipid peroxidation, on the deformability, dehydration, and 51Cr-survival of erythrocytes. Brit J Haematol 53:247 (1983).

    Article  CAS  Google Scholar 

  25. S.K. Jain, K.M. Morshed, K. Kannan, K.E. McMartin, and J.A. Bocchini. Effect of elevated glucose concentrations on cellular lipid peroxidation and growth of cultured human kidney proximal tubule cells. Mol Cell Biochem 162:11 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. V. Rattan, Y. Shen, C. Sultana, D. Kumar, and V.K. Kalra. Diabetic RBC-induced oxidant stress leads to transendothelial migration of monocyte-like HL60 cells. Amer J Physiol 273:E369 (1997).

    PubMed  CAS  Google Scholar 

  27. S.K. Jain. Should high-dose vitamin E supplementation be recommended to diabetic patients. Diab Care 22:1242 (1999).

    Article  CAS  Google Scholar 

  28. G. Chinetti, S. Griglio, M. Antonucci, I.P. Torra, P. Delerive, A. Majd, J.C. Fruchart, J. Chapman, J. Najib, and B. Staels. Activation of prolifertor-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273:25573 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, S.K., Kannan, K. (2001). Ketosis and the Generation of Oxygen Radicals in Diabetes Mellitus. In: Angel, A., Dhalla, N., Pierce, G., Singal, P. (eds) Diabetes and Cardiovascular Disease. Advances in Experimental Medicine and Biology, vol 498. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1321-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1321-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5496-3

  • Online ISBN: 978-1-4615-1321-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics