Endothelins in the Microvasculature and Heart in Diabetes

  • Subrata Chakrabarti
  • Shali Chen
  • Terry Evans
  • Morris Karmazyn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 498)


Diabetes and its complications impose a global health problem of enormous proportion1. One of the most challenging problems during the last few decades has involved the elucidation of the pathogenetic mechanisms responsible for chronic diabetic complications, in an attempt to develop targeted treatment strategies. The establishment of hyperglycemia as the key initiating factor for the development of chronic diabetic complications is a milestone in diabetes research2. However the mechanisms, at the cellular level, by which hyperglycemia affects tissue structures and functions leading to diabetic complications remain poorly understood. Exploration of these mechanisms are challenging due to their complex nature and are of vital importance as they will form the backbone for the development of adjuvant treatment strategies. Chronic complications affects multiple organ systems in diabetes. In this article we will address some of the pathogenetic mechanisms of diabetic heart disease as well as diabetic retinopathy where microvascular affection is of major pathogenetic importance.


Vascular Endothelial Growth Factor Diabetic Retinopathy Diabetic Complication Vascular Endothelial Growth Factor Production Resistivity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Diabetes Federation Triennial Report 1991–1994, IDF, Brussels, 1994Google Scholar
  2. 2.
    The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes ellitus, N Engl J Merl 329:977 (1993).CrossRefGoogle Scholar
  3. 3.
    National Society to prevent blindness; Vision problems in US. New York, 1980Google Scholar
  4. 4.
    J.R. Williamson, K. Chang, M. Frangos, K.S. Hasan, Y. Ido, T. Kawamura, J.R. Nyengaard, M. van den Enden, C. Kilo, R.G. Tilton, Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 42:801 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Brownlee, A. Cerami, and H. Vlassara, Advanced products of nonenzymatic glycosylation and the pathogenesis of diabetic vascular disease. Diabetes Metab Rev. 4:437 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    D.A. Greene, S.A. Lattimer, A.A. Sima, Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl JMed. 316:599 (1987).CrossRefGoogle Scholar
  7. 7.
    G.L. King, F.J. Oliver, T. Inoguchi, T. Shiba, N.K. Banskota, Abnormalities of vascular endothelium in diabetesin: Diabetes Annual, S.M. Marshall, P.D. Home, K.G.M.M. Alberti, L.P. Krall, eds., Elsevier Publication, Amsterdam pp107 (1993).Google Scholar
  8. 8.
    D. Koya, G.L. King, Protein kinase C activation and the development of diabetic complications. Diabetes. 47:859 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    NIH Publication # 96: 3926 (1995).Google Scholar
  10. 10.
    A. Shehadeh, T.J. Regan, Cardiac consequences of diabetes mellitus. Clin Cardiol. 18:301 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    D.S. Bell, Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease? Diabetes Care. 18:708 (1995).Google Scholar
  12. 12.
    M.M. LeWinter, Diabetic cardiomyopathy: an overview. Coron Artery Dis. 7:95 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    C.D. Furberg, H.P. Adams Jr W B Applegate, R.P. Byington, M.A. Espeland, T. Hartwell, D.B. Hunninghake, D.S. Lefkowitz, J. Probstfield, W.A. Riley, B. Young, Effect of Iovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation. 90:1679 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Pyorala, M. Laakso, M. Uusitupa, Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev. 3:463 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Stamler, O. Vaccaro, J.D. Neaton, D. Wentworth, Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 16:434 (1993).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Laakso, T. Ronnemaa, S. Lehto, P. Puukka, V. Kallio, K. Pyorala, Does NIDDM increase the risk for coronary heart disease similarly in both low-and high-risk populations? Diabetologia. 38:487 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    M.P. Savage, A.S. Krolewski, G.G. Kenien, M.P. Lebeis, A.R. Christlieb, S.M. Lewis, Acute myocardial infarction in diabetes mellitus and significance of congestive heart failure as a prognostic factor. Am J Cardiol. 62:665 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    A.S. Jaffe, J.J. Spadaro, K. Schechtman, R. Roberts, E.M. Geltman, B.E. Sobel, Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. Am Heart J. 108:31 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    J.W. Smith, F.I. Marcus, R. Serokman, Prognosis of patients with diabetes mellitus after acute myocardial infarction. Am J Cardiol. 54:718 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Pirart, Diabetes mellitus and its degenerative complications. A prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care. 1:168 (1978).Google Scholar
  21. 21.
    G. Suarez, Nonenzymatic browning of proteins and the sorbitol pathway. Prog Clin Biol Res. 304:141 (1989).PubMedGoogle Scholar
  22. 22.
    G.L. King, M. Kunisaki, Y. Nishio, T. Inoguchi, T. Shiba, P. Xia, Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes, 45 Suppl. 3:S105 (1996).Google Scholar
  23. 23.
    T. Inoguchi, R. Battan, E. Handler, J.R. Sportsman, W. Heath, G.L. King, Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation, Proc Nail Acad Sci USA, 89:11059 (1992).CrossRefGoogle Scholar
  24. 24.
    Y. Tanaka, A. Kashiwagi, T. Ogawa, N. Abe, T. Asahina, M. Ikebuchi, Y. Takagi, Y. Shigeta, Effect of verapamil on cardiac protein kinase C activity in diabetic rats, Eur J Pharmacol. 200:353 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    N. Kaiser, S. Sasson. E.P. Feener, N. Boukobza-Vardi, S. Higashi, D.E. Moller, S. Davidheiser, R.J. Przybylski, G.L. King, Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes, 42:80 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    L.A. Vasilets, W. Schwarz, Structure-function relationships of cation binding in the Ná K’-ATPase, Biochim Biophys Acta. 1154:201 (1993).PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Nishio, C.E. Warren, J.A. Buczek-Thomas, J. Rulfs, D. Koya, L.P. Aiello, E.P. Feener, T.B. Miller Jr, J.W. Dennis, G.L. King, Identification and characterization of a gene regulating enzymatic glycosylation which is induced by diabetes and hyperglycemia specifically in rat cardiac tissue, J Clin Invest. 96:1759 (1995).PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Nishio, L.P. Aiello, G.L. King, Glucose induced genes in bovine aortic smooth muscle cells identified by mRNA differential display, FASEB J. 8:103 (1994).PubMedGoogle Scholar
  29. 29.
    L.P. Aiello, G.S. Robinson, Y.W. Lin, Y. Nishio, G.L. King, Identification of multiple genes in bovine retinal pericytes altered by exposure to elevated levels of glucose by using mRNA differential display, Proc Natl Acad Sci USA. 91:6231 (1994).PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Nishizuka, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 258:607 (1992).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Shiba, T. Inoguchi, J.R. Sportsman, W.F. Heath, S. Bursell, G.L. King, Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation, Am J Physiol. 265:E783 (1993).PubMedGoogle Scholar
  32. 32.
    P.A. Craven, F.R. DeRubertis, Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose, J Clin Invest. 83:1667 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Ishii, M.R. Jirousek, D. Koya, C. Takagi, P. Xia, A. Clermont, S.E. Bursell, T.S. Kern, L.M. Ballas, W.F. Heath, L.E. Stramm, E.P. Feener, G.L. King, Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor, Science. 272:728 (1996).PubMedCrossRefGoogle Scholar
  34. 34.
    P.M. Vanhoutte, Endothelin-1. A matter of life and breath, Nature. 368:693 (1994).PubMedCrossRefGoogle Scholar
  35. 35.
    M.S. Simonson, Endothelins: multifunctional renal peptides, Physiol Rev. 73:375 (1993).PubMedGoogle Scholar
  36. 36.
    E.L. Schiffrin, The endothelium and control of blood vessel function in health and diseaseClin Invest Med, 17:602 (1994).PubMedGoogle Scholar
  37. 37.
    G.M. Rubanyi, M.A. Polokoff, Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology, Pharmacol Rev, 46:325 (1994).PubMedGoogle Scholar
  38. 38.
    J.P. Huggins, J.T. Pelton, R.C. Miller, The structure and specificity of endothelin receptors: their importance in physiology and medicine, Pharmacol Ther. 59:55 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    Y. Kurihara, H. Kurihara. H. Suzuki, T. Kodama, K. Maemura, R. Nagai, H. Oda, T. Kuwaki, W.H. Cao, N. Kamada, K. Jishage, Y. Ouchi, S. Azuma, Y. Toyoda, T. Ishikawa, M. Kumada, Y. Yazaki, Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1, Nature. 368:703 (1994).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Peri, G.B. Vannelli, G. Fantoni, S. Giannini, T. Barni, C. Orlando, M. Serio, M. Maggi, Endothelin in rabbit uterus during pregnancy, Am J Physiol, 263:E158 (1992).PubMedGoogle Scholar
  41. 41.
    E.A. Woodcock, J.K. Tanner, L.M. Caroccia, P.J. Little, Mechanisms involved in the stimulation of aldosterone production by angiotensin II, vasopressin and endothelin, Clin Exp Pharmacol Physiol. 17:263 (1990).PubMedCrossRefGoogle Scholar
  42. 42.
    Y. Kurihara, H. Kurihara, H. Oda, K. Maemura, R. Nagai, T. Ishikawa, Y. Yazaki, Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1, J Clin Invest, 96:293 (1995).PubMedCrossRefGoogle Scholar
  43. 43.
    E.R. Levin, Endothelins as cardiovascular peptides, Am JNephrol, 16:246 (1996).CrossRefGoogle Scholar
  44. 44.
    B.H.L. Chua, C.C. Chua, C.A. Diglio, B.B. Siu, Regulation of endothelin-1 mRNA by angiotensin II in rat heart endothelial cells, Biochim Biophys Acta, 1178:201 (1993).PubMedCrossRefGoogle Scholar
  45. 45.
    T. Suzuki, T. Kumazaki, Y. Mitsui, Endothelin-1 is produced and secreted by neontal rat cardiac myocytes in vitro, Biochem Biophys Res Commun, 191:823 (1993).PubMedCrossRefGoogle Scholar
  46. 46.
    J.R. Hu, R. Von Harsdorf, R.E. Lang, Endothelin has potent inotropic effects in rat atria, Eur J Pharmacol, 158:275 (1988).PubMedCrossRefGoogle Scholar
  47. 47.
    T. Ishikawa, M. Yanagisawa, S. Kimura, K. Goto, T. Masaki, Positive chronotropic effects of endothelin, a novel endothelium-derived vasoconstrictor peptide, Pflugers Arch, 413:108 (1988).PubMedCrossRefGoogle Scholar
  48. 48.
    L. Vesci, G.G. Mattera, P. Tobia, N. Corsico, M. Calvani, Cardiac and renal endothelin-1 binding sites in streptozotocin-induced diabetic rats, Pharmacol Res, 32:363 (1995).PubMedCrossRefGoogle Scholar
  49. 49.
    Y.W. Lin, E. Duh, Z. Jiang, Expression of preproEndothelin-1 mRNA in Streptozotocin-induced diabetic rats, Diabetes, 45(suppl. 2) 48A (1996).Google Scholar
  50. 50.
    A.T. Lieu, J.J. Reid, Changes in the responsiveness to endothelin-1 in isolated atria from diabetic rats, Eur J Pharmacol, 261:33 (1994).PubMedCrossRefGoogle Scholar
  51. 51.
    T. Nakamura, I. Ebihara, M. Fukui, Y. Tomino, H. Koide, Effect of a specific endothelin receptor A antagonist on mRNA levels for extracellular matrix components and growth factors in diabetic glomeruli, Diabetes, 44:895 (1995).PubMedCrossRefGoogle Scholar
  52. 52.
    T.F. Luscher, C. Boulanger, Z. Yang, Y. Dohi, Interaction between endothelin and endothelial derived relaxing factors, in: Endothelin, G.M. Rubanyi, ed., Oxford University Press, New York (1992).Google Scholar
  53. 53.
    S. Gupta, N.B. Ruderman, E.J. Cragoe Jr, I. Sussman, Endothelin stimulates Na’/K’-ATPase activity by a protein kinase C-dependent pathway in rabbit aorta, Am J Physiol, 261:H38 (1991).PubMedGoogle Scholar
  54. 54.
    M. Awazu, R.E. Parker, B.R. Harvie, I. Ichikawa, V. Kon, Down-regulation of endothelin-1 receptors by protein kinase C in streptozotocin diabetic rats, J Cardiovasc Pharmacol, 17:5500 (1991).CrossRefGoogle Scholar
  55. 55.
    P. Rosen, T. Ballhausen, W. Bloch, K. Addicks, Endothelial relaxation is disturbed by oxidative stress in the diabetic rat heart: influence of tocopherol as antioxidant, Diabetologia, 38:1157 (1995).PubMedCrossRefGoogle Scholar
  56. 56.
    L.P. Aiello, S.E. Bursell, A. Clermont, E. Duh, H. Ishii, C. Takagi, F. Mori, T.A. Ciulla, K. Ways, M. Jirousek, L.E. Smith, G.L. King, Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isofotm-selective inhibitor, Diabetes, 46:1473 (1997).PubMedCrossRefGoogle Scholar
  57. 57.
    A. Pedram, M. Razandi, R.M. Hu, E.R. Levin, Vasoactive peptides modulate vascular endothelial cell growth factor production and endothelial cell proliferation and invasion, J Biol Chem, 272:17097 (1997).PubMedCrossRefGoogle Scholar
  58. 58.
    A. Ladoux, C. Frelin, Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart, Biochem Biophys Res Commun, 195:1005 (1993).PubMedCrossRefGoogle Scholar
  59. 59.
    E.M. Kohner, V. Patel, S.M. Rassam, Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy, Diabetes, 44:603 (1995).PubMedCrossRefGoogle Scholar
  60. 60.
    R.G. Tilton, K. Chang, K.S. Hasan, S.R. Smith, J.M. Petrash, T.P. Misko, W.M. Moore, M.G. Currie, J.A. Corbett, M.J. McDaniel, J.R. Williamson, Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation, Diabetes, 42:221 (1993).PubMedCrossRefGoogle Scholar
  61. 61.
    D.X. Deng, T. Evans, K. Mukherjee, D. Downey, S. Chakrabarti, Diabetes induced vascular dysfunction in the retina: role of endothelins, Diabetologia, 42:1228 (1999).PubMedCrossRefGoogle Scholar
  62. 62.
    T. Evans, D.X. Deng, D. Downey, S. Chakrabarti, Endothelins, their receptors, and retinal vascular dysfunction in galactose-fed rats, Diabetes Res Clin Pract Canad, 48:75(2000).Google Scholar
  63. 63.
    K. Takahashi, R.A. Brooks, S.M. Kanse, M.A. Ghatei, E.M. Kohner, S.R. Bloom, Production of endothelin 1 by cultured bovine retinal endothelial cells and presence of endothelin receptors on associated pericytes, Diabetes, 38:1200 (1989).PubMedCrossRefGoogle Scholar
  64. 64.
    M.W. MacCumber, H.D. Jampel, S.H. Snyder, Ocular effects of the endothelins. Abundant peptides in the eye, Arch Ophthalmol, 109:705 (1991)PubMedCrossRefGoogle Scholar
  65. 65.
    M.W. MacCumber, C.A. Ross, B.M. Glaser, S.H. Snyder, Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action, Proc Natl Acad Sci USA, 86:7285 (1989).CrossRefGoogle Scholar
  66. 66.
    D. McDonald, J. Bailie, D. Archer, U. Chakravarthy, Molecular characterization of endothelin receptors and the effect of insulin on their expression in retinal microvascular pericytes, J Cardiovasc Pharmacol, 26 Suppl 3:S287 (1995).Google Scholar
  67. 67.
    S. Chakrabarti, X.T. Gan, A. Merry, M. Karmazyn, A.A. Sima, Augmented retinal endothelin-1, endothelin-3, endothelinA and endothelinB gene expression in chronic diabetes, Curr Eye Res, 17:301 (1998).PubMedCrossRefGoogle Scholar
  68. 68.
    U. Chakravarthy, A.J. Douglas, J.R. Bailie, B. McKibben, D.B. Archer, Immunoreactive endothelin distribution in ocular tissues, Invest Ophthalmol Vis Sci, 35:2448 (1994).PubMedGoogle Scholar
  69. 69.
    S. Chakrabarti, A.A. Sima, Endothelin-1 and endothelin-3-like immunoreactivity in the eyes of diabetic and non-diabetic BB/W rats, Diabetes Res Clin Pract, 37:109 (1997).PubMedCrossRefGoogle Scholar
  70. 70.
    G.L. King, M. Brownlee, The cellular and molecular mechanisms of diabetic complications, Endocrinol Metab Clin North Am, 25:255 (1996).PubMedCrossRefGoogle Scholar
  71. 71.
    D. Pribnow, L.L. Muldoon, M. Fajardo, L. Theodor, L.Y. Chen, B.E. Magun, Endothelin induces transcription of fos/jun family genes: a prominent role for calcium ion, Mol Endocrinol, 6:1003 (1992).PubMedCrossRefGoogle Scholar
  72. 72.
    L.L. Muldoon, D. Pribnow, K.D. Rodland, B.E. Magun, Endothelin-1 stimulates DNA synthesis and anchorage-independent growth of Rat-1 fibroblasts through a protein kinase C-dependent mechanismCell Regul, 1:379 (1990).PubMedGoogle Scholar
  73. 73.
    L.L. Muldoon, K.D. Rodland, M.L. Forsythe, B.E. Magun, Stimulation of phosphatidylinositol hydrolysis, diacylglycerol release, and gene expression in response to endothelin, a potent new agonist for fibroblasts and smooth muscle cells, JBiol Chem, 264:8529 (1989).Google Scholar
  74. 74.
    M.S. Simonson, J.M. Jones, M.I. Dunn, Differential regulation of fos and jun gene expression and AP-1 cis-element activity by endothelin isopeptides. Possible implications for mitogenic signaling by endothelin, JBiol Chem, 267:8643 (1992).Google Scholar
  75. 75.
    S. Chakrabarti, N. Ma, A.A. Sima, Anionic sites in diabetic basement membranes and their possible role in diffusion barrier abnormalities in the BB-rat, Diabetologia,. 34:301 (1991).PubMedCrossRefGoogle Scholar
  76. 76.
    S. Roy, M. Lorenzi, Early biosynthetic changes in the diabetic-like retinopathy of galactose-fed rats, Diabetologia, 39:735 (1996).PubMedCrossRefGoogle Scholar
  77. 77.
    T. Evans, D.X. Deng, S. Chen, S. Chakrabarti, Hyperhexosemia induced extracellular matrix protein gene expression and basement membrane thickening in the retinal microvasculature are mediated via augmented endothelin production, Canad. J. Diab. Care, 23(Suppl. 1):A177 (1999).Google Scholar
  78. 78.
    A. Matsuura, S. Kawashima, W. Yamochi, K. Hirata, T. Yamaguchi, N. Emoto, M. Yokoyama, Vascular endothelial growth factor increases endothelin-converting enzyme expression in vascular endothelial cells, Biochem Biophys Res Commun, 235:713 (1997).PubMedCrossRefGoogle Scholar
  79. 79.
    Y. Oyama, H. Kawasaki, Y. Hattori, M. Kanno, Attenuation of endothelium-dependent relaxation in aorta from diabetic rats, Eur J Pharmacol, 132:75 (1986).PubMedCrossRefGoogle Scholar
  80. 80.
    P. Rosen, T. Ballhausen, K. Stockklauser, Impairment of endothelium dependent relaxation in the diabetic rat heart: mechanisms and implications, Diabetes Res Clin Pract, 31 Suppl:S143 (1996).Google Scholar
  81. 81.
    J. Nadler, L. Winer, Free radicals, nitric oxide and diabetic complications, in: Diabetes Mellitus, D. LeRoith, et al. (eds), Lippincott-Raven, Philadelphia (1996).Google Scholar
  82. 82.
    H.P. Hammes, J. Lin, R.G. Bretzel, M. Brownlee, G. Breier, Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat, Diabetes, 47:401 (1998).PubMedCrossRefGoogle Scholar
  83. 83.
    L.P. Aiello, R.L. Avery, P.G. Arrigg, B.A. Keyt, H.D. Jampel, S.T. Shah, L.R. Pasquale, H. Thieme, M.A. Iwamoto, J.E. Park, et al, Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders, N Engl J Med, 331:1480 (1994).PubMedCrossRefGoogle Scholar
  84. 84.
    J.W. Miller, A.P. Adamis, L.P. Aiello, Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy, Diabetes Metab Rev, 13:37 (1997).PubMedCrossRefGoogle Scholar
  85. 85.
    K. Cullinan-Bove, R.D. Koos, Vascular endothelial growth factor/vascular permeability factor expression in the rat uterus: rapid stimulation by estrogen correlates with estrogen-induced increases in uterine capillary permeability and growth, Endocrinology, 133:829 (1993).PubMedCrossRefGoogle Scholar
  86. 86.
    T. Murata, K. Nakagawa, A. Khalil, T. Ishibashi, H. Inomata, K. Sueishi, The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas, Lab Invest, 74:819 (1996).PubMedGoogle Scholar
  87. 87.
    L.B. Jakeman, J. Winer, G.L. Bennett, C.A. Altar, N. Ferrara, Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues, J Clin Invest, 89:244 (1992).PubMedCrossRefGoogle Scholar
  88. 88.
    J.P. Liu, Protein kinase C and its substrates, Mol Cell Endocrinol, 116:1 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Subrata Chakrabarti
    • 1
  • Shali Chen
    • 1
  • Terry Evans
    • 1
  • Morris Karmazyn
    • 2
  1. 1.Department of PathologyThe University of Western Ontario LondonOntarioCanada
  2. 2.Department of Pharmacology and ToxicologyThe University of Western OntarioLondonCanada

Personalised recommendations