Skip to main content

Endothelial Integrity and Repair

  • Chapter
Diabetes and Cardiovascular Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 498))

Abstract

Large artery endothelial integrity and repair is an important area of investigation in atherosclerosis research. The development of an atherosclerotic plaque (fibrofatty plaque) is a dynamic and complex process that is closely associated with the structure and dysfunction of endothelial cells. Although the sequence of events that lead to the initiation and growth of fibrofatty atherosclerotic plaques is not well understood, there is much experimental and clinical support for the concept that disruption of structural and functional endothelial integrity plays an important role in atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stary, HC, Blankenhorn, D, Chandler, AB, Glagov, S, Insull, W Jr, Richardson, M, Rosenfeld, ME, Schaffer, SA, Schwartz, CJ, Wagner, WD, Wissler, RW. A definition of the intima of human arteries and its atherosclerotic-prone regions. Circulation 1992;85:391–405.

    Article  PubMed  CAS  Google Scholar 

  2. Lin S-J, Jan K-M, Weinbaum S, Chien S. Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arteriosclerosis 1989;9:203–236.

    Article  Google Scholar 

  3. Caplan BA, Schwartz CJ. Increase endothelial turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis 1973;17:401–417.

    Article  PubMed  CAS  Google Scholar 

  4. Langille BL, Adamson SL. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice, Cire Res 1981;48:481–488.

    CAS  Google Scholar 

  5. Kim DW, Gotlieb AI, Langille BL. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress. Arteriosclerosis 1989a;9:439–445.

    Article  CAS  Google Scholar 

  6. Dejana E, Corada M, Lampugnani MG. Endothelial cell-to-cell junctions. FASEB Jr. 1995;9:910–918.

    CAS  Google Scholar 

  7. Hüttner I, Boutet M, More RH. Studies on protein passage through arterial endothelium: II. Regional differences in permeability to fine structural protein tracers in arterial endothelium of normotensive rat,. Lab Invest 1973;28:678–685.

    PubMed  Google Scholar 

  8. Hinsbergh VWM. Endothelial permeability for macromolecules. Arterioscler Thromb Vase Biol 1997;17:1018–1023.

    Article  Google Scholar 

  9. Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Gent 1993;9:317–321.

    Article  CAS  Google Scholar 

  10. Noria S, Cown D, Gotlieb AI, Langille BL. Transient and steady state effects of shear stress on endothelial cell adherens junction. Cire Res 1999;85:504–514.

    Article  CAS  Google Scholar 

  11. Albelda SM, Buck CA. Integrins and other cell adhesion molecules, FASEB j 1990;4:2868–2880.

    PubMed  CAS  Google Scholar 

  12. Wong MKK, Gotlieb AI. In vitro reendothelialization of a single cell wound: Role of microfilament bundles in rapid lamellipodia mediated would close. Lab Invest 1984;51:75–81.

    PubMed  CAS  Google Scholar 

  13. Wong MKK, Gotlieb AI. The reorganization of microfilaments, centrosomes, and microtubules during the in vitro small wound reendothelialization. J Cell Biol 1988;107:1777–1783.

    Article  PubMed  CAS  Google Scholar 

  14. Kreis TE, Birchmeier W. Stress fibre sarcomeres of fibroblasts are contractile. Cell 1980;22:555–561.

    Article  PubMed  CAS  Google Scholar 

  15. Singer I. Association of fibronectin and vinculin with focal contacts and stress fibers in vascular endothelial cells in vivo. J Cell Biol 1982;92:398–408.

    Article  PubMed  CAS  Google Scholar 

  16. Wong AJ, Pollard TD, Herman IM. Actin filament stress fibers in vascular endothelial cells in vivo. Science 1983;219:867–869.

    Article  PubMed  CAS  Google Scholar 

  17. Gotlieb AI, McBurnie-May LM, Subrahmanyan L, Kalnins VI. Distribution of microtubule organizing centeres in migrating sheets of endothelial cells. J Cell Biol 1981;91:589–594.

    Article  PubMed  CAS  Google Scholar 

  18. Gotlieb AI, Spector W, Wong MKK, Lacey C. In vitro reendothelialization: microfilament bundle redistribution in migrating sheet of porcine endothelial cells. Arteriosclerosis 1984;4:91–96.

    Article  PubMed  CAS  Google Scholar 

  19. Kupfer A, Louvard D, Singer SJ. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci USA 1982;79:2603–2607.

    Article  PubMed  CAS  Google Scholar 

  20. Wong MKK, Gotlieb AI. Endothelial cell monolayer integrity I. Characterization of dense peripheral band of microfilaments. Arteriosclerosis 1986;6:212–219.

    Article  PubMed  CAS  Google Scholar 

  21. Coomber BL, Gotlieb AI. In vitro endothelial wound repair: interaction of cell migration and proliferation. Arteriosclerosis 1990;10:215–222.

    Article  PubMed  CAS  Google Scholar 

  22. Gotlieb AI, Langille BL, Wong MKK, Kim DW. Structure and function of the endothelial cytoskeleton. Lab Invest 1991;65:123–127.

    Google Scholar 

  23. Gotlieb AI, Subrahmanyan L, Kamins VI. Microtubule organizing centers and cell migration: Effects of inhibition of migration and microtubule disruption in endothelial cells. J Cell Biol 1983;96:1266–1272.

    Article  PubMed  CAS  Google Scholar 

  24. Lee TYJ, Rosenthal A, Gotlieb AI. The transition of aortic endothelial cells from resting to migrating cells is associated with three sequential patterns of micrfilament organization. J Vasc Res 1996;33:13–24.

    Article  PubMed  CAS  Google Scholar 

  25. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 1996;133:1403–1415.

    Article  PubMed  CAS  Google Scholar 

  26. Ettenson D, Gotlieb AI. In vitro large-wound re-endothelialization. Arteriosclerosis and Thrombosis 1993;13:1270–1281.

    Article  PubMed  CAS  Google Scholar 

  27. Ettenson D, Gotlieb AI. Basic fibroblast growth factor is a signal for the initiation of centrosome redistribution to the front of migrating endothelial cells at the edge of an in vitro wound. Arterioscler Thromb Vasc Viol 1995;15:515–521.

    Article  CAS  Google Scholar 

  28. Colangelo S, Langille BL, Gotlieb AI. Endothelial microfilament distribution in the immediate vicinity of arterial branch sites. Cell Tissue Res 1994;278:235–242.

    Article  PubMed  CAS  Google Scholar 

  29. Shasby DM, Shasby SS, Sullivan JM, Peach MJ. Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ Res 1982;51:657–661.

    Article  PubMed  CAS  Google Scholar 

  30. Wong MKK, Gotlieb AI. Endothelial monolayer integrity: perturbation of F-actin filaments and DPB vinculin network. Arteriosclerosis 1990;10:76–84.

    Article  PubMed  CAS  Google Scholar 

  31. Kim DW, Langille BL, Wong MKK, Gotlie AI. Patterns of endothelial microfilament distribution in the rabbit aorta in situ. Circ Res 1989;64:21–31.

    Article  PubMed  CAS  Google Scholar 

  32. Walpola PL, Gotlieb AI, Langille BL. Monocyte adhesion and changes in endothelial cell number, morphology and F-actin distribution elicited by low shear stress in vivo. Am J Pathol 1993;142:1392–1400.

    PubMed  CAS  Google Scholar 

  33. Cogangelo S, Langille BL, Steiner G, Gotlieb AI. Alterations in endothelial F-actin microfilaments in rabbit aorta in hypercholesterolemia. Arterioscler Thromb Vasc Biol 1998;18:52–56.

    Article  Google Scholar 

  34. Vyalov S, Langille BL, and Gotlieb AI. Low shear stress disrupts repair processes and slows in vivo reendothelialization: effects of shear stress. Am J Pathol 1996;149:2107–2118.

    PubMed  CAS  Google Scholar 

  35. Eshraghi S, Gotlieb AI. Insulin does not disrupt actin microfilaments, microtubules in in vitro aortic endothelia wound repair. Biochem Cell Biol J 1995;73:507–514.

    Article  CAS  Google Scholar 

  36. Madri JA, Bell L, Marx M, Mervin JR, Basson C, Prinz C. Effects of soluble factors and extracellular matrix components on vaxular cell behaviou in vitro and in vivo: models of de-endothelialization and repair. J Cell Biochem 1991;45:123–130.

    Article  PubMed  CAS  Google Scholar 

  37. Biro S, YuZ-X, Fu Y-M, Smale G, Sasse J, Sanchez J, Ferrans VJ, Casscells W. Expression of subcellular distribution of basic fibroblast growth factor are regulated during migration of endothelial cells. Circulation Res. 1994;74:485–494.

    Article  PubMed  CAS  Google Scholar 

  38. Sato Y, Rafkin DB. Autocrine activities of basic fibrobast grwoth factor: regulation of endothelial cell movement, plasminogen, activator synthesis, and DNA synthesis. J Cell Biol 1988;107:1199–1205.

    Article  PubMed  CAS  Google Scholar 

  39. Wang D, Gotlieb AI. Effect of FGF-2 on the early stages of in vitro endothelial repair. Exp Mol Pathol 1999;66:179–190.

    Article  PubMed  CAS  Google Scholar 

  40. Fyfe AI, Rosenthal A, Gotlieb AI. Immunosuppresive agents and endothelial repair: prednisolone delays migration and cytoskeletal rearrangement in wounded porcine aortic monolayers. Arterioscler Thromb Vasc Biol 1995;15:1166–1171.

    Article  PubMed  CAS  Google Scholar 

  41. Heimark RL, Twardzki DR, Schwartz S. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelet. Science 1986;233:1078–1080.

    Article  PubMed  CAS  Google Scholar 

  42. DiMuzio PJ, Pratt KJ, Park PK, Carabasi RA. Role of thrombin in endothelial cell monolayer repair in vitro. J Vasc Surg 1994;20:621–628.

    Article  PubMed  CAS  Google Scholar 

  43. Lee T-Y J, Gotleib AI. Genistein inhibits cell elongation during the initiation of endothelial wound repair. FASEB J 1996;10:A1001 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, TY.J., Noria, S., Lee, J., Gotlieb, A.I. (2001). Endothelial Integrity and Repair. In: Angel, A., Dhalla, N., Pierce, G., Singal, P. (eds) Diabetes and Cardiovascular Disease. Advances in Experimental Medicine and Biology, vol 498. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1321-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1321-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5496-3

  • Online ISBN: 978-1-4615-1321-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics