Advertisement

Asymptotics of the Helium Bound States

  • Yu. V. Popov
  • L. U. Ancarani

Abstract

An original method is proposed for searching the formal solution of the Hylleraas equation for the helium atom. A mathematically rigorous study confirms, in a unified and simpler manner, several results obtained earlier in the literature but not necessarily in the same contexts. We use an adequate transformation of the Schrödinger equation to identify three asymptotic channels. Two of these are considered in details as physical and are seen to differ from“traditional” ones. In particular, we demonstrate that there is no place for the widely used Hylleraas type exponent.

Keywords

Hylleraas equation helium ground state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. S. Kheifets et al, J. Phys. B: At. Mol. Phys.32, 5047 (1999).ADSCrossRefGoogle Scholar
  2. [2]
    J. Berakdar, Phys. Rev. A53, 2314 (1996);ADSCrossRefGoogle Scholar
  3. [2a]
    J. Berakdar, Phys. Rev. A54, 1480 (1996);ADSCrossRefGoogle Scholar
  4. [2b]
    J. Berakdar, Phys. Rev. A55, 1994 (1997).ADSCrossRefGoogle Scholar
  5. [3]
    G. Gasaneo et al, Phys. Rev. A55, 2809 (1997).ADSCrossRefGoogle Scholar
  6. [4]
    Y. E. Kim and A. L. Zubarev, Phys. Rev. A56, 521 (1997).ADSCrossRefGoogle Scholar
  7. [5]
    E. A. Hylleraas, Z. Phys.48, 469 (1928);ADSCrossRefMATHGoogle Scholar
  8. [5a]
    E. A. Hylleraas, Z. Phys.54, 347 (1929);.ADSCrossRefMATHGoogle Scholar
  9. [5b]
    E. A. Hylleraas, Z. Phys.65, 759 (1930).ADSCrossRefMATHGoogle Scholar
  10. [6]
    J. H. Bartlett, J. J. Gibbons and C. G. Dunn, Phys. Rev.47, 679 (1935);ADSCrossRefMATHGoogle Scholar
  11. [6a]
    J. H. Bartlett, Phys. Rev.51, 661 (1937)ADSCrossRefGoogle Scholar
  12. [7]
    H. Conroy, J. Chem. Phys.41, 1327 (1964)ADSCrossRefGoogle Scholar
  13. [8]
    J. H. Bartlett, Phys. Rev.98, 1067 (1955)ADSCrossRefMATHGoogle Scholar
  14. [9]
    V. A. Fock, Izvest. Akad. Nauk SSSR (Rus. )18, 161 (1954);Google Scholar
  15. [9a]
    V. A. Fock, Kgl. Norske Videnskabers Selskabs Forh.31, 138 (1958)Google Scholar
  16. [10]
    R. A. Bonham and D. A. Kohl, J. Chem. Phys.45, 2471 (1966).ADSCrossRefGoogle Scholar
  17. [11]
    C. Dupré et al, J. Phys. B: At. Mol. Phys.25, 259 (1992).ADSCrossRefGoogle Scholar
  18. [12]
    P. J. Marchalant, C. T. Whelan and H. R. J. Walters, J. Phys. B: At. Mol. Phys.31, 1141 (1998).ADSCrossRefGoogle Scholar
  19. [13]
    Yu. V. Popov et al, Few Body Systems suppl.10, 235 (1999).ADSCrossRefGoogle Scholar
  20. [14]
    V. Mergel et al., contribution to this volume.Google Scholar
  21. [15]
    A. Dorn et al., J. Phys. IV France9, Pr6-89 (1999).CrossRefGoogle Scholar
  22. [16]
    S. P. Merkuriev, Ann. Phys. (NY)130, 395 (1980).MathSciNetADSCrossRefMATHGoogle Scholar
  23. [17]
    M. V. Zhukov et al, Phys. Rep.231, 151 (1993).ADSCrossRefGoogle Scholar
  24. [18]
    J. M. Rost, Few Body Systems suppl.10, 253 (1999).ADSCrossRefGoogle Scholar
  25. [19]
    V. D. Efros, A. M. Frolov and M. I. Mukhtarova, J. Phys. B: At. Mol. Phys.15, L819 (1982).ADSCrossRefGoogle Scholar
  26. [20]
    U. Kleinekathöfer et al., Phys. Rev. A54, 2840 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Yu. V. Popov
    • 1
  • L. U. Ancarani
    • 2
  1. 1.Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Institut de PhysiqueLPMC, Université de MetzMetzFrance

Personalised recommendations