Assorted Remarks on Density Functional Theory

  • Reiner M Dreizler

Abstract

If one attempts to investigate (e,2e) processes on solids rather than on helium, one has to face the question of how to describe the target. The suggestion is most likely: use density functional theory (DFT) [1] which has become an extremely popular tool for the discussion of quantum many body systems. The basic version of DFT deals (exclusively) with the ground state properties of such systems. The foundation of this theory is the Hohenberg-Kohn (HK) theorem [2], which states (ignoring mathematical niceties): The ground state expectation value of any observable can be represented as a unique functional of the ground state density
$$ {A_0}\left[ n \right] = < {\psi _0}\left[ n \right]\left| {\hat A} \right|{\psi _0}\left[ n \right] > . $$
(1)

Keywords

Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. M. Dreizler and E. K. U. Gross, DensityFunctionalTheory, (Springer Verlag, Berlin, 1990)Google Scholar
  2. [2]
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S. J. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980)ADSCrossRefGoogle Scholar
  5. [5]
    J. P. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981)ADSCrossRefGoogle Scholar
  6. [6]
    O. Gunnarson, M. Jonson and B. I. Lunqvist, Phys. Rev. B20, 3136 (1979)ADSCrossRefGoogle Scholar
  7. [7]
    see A. D. Becke, J. Chem. Phys. 84, 4524 (1986) andADSCrossRefGoogle Scholar
  8. see A. D. BeckePhys. Rev. A38, 3098 (1988) for Be88ADSCrossRefGoogle Scholar
  9. [8]
    see J. P. Perdew and Y. Wang, Phys. Rev. B33, 8800 (1986)ADSCrossRefGoogle Scholar
  10. J. P. Perdew and Y. Wang,(Erratum: B40, 3399 (1989))Google Scholar
  11. for PW86 and e. g. J. P. Perdew, K. Burke and Y. Wang, Phys. Rev. B54, 10533 (1996) for PW91Google Scholar
  12. [9]
    B. G. Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys. 97, 7846 (1992)ADSCrossRefGoogle Scholar
  13. B. G. Johnson, P. M. W. Gill and J. A. Pople,J. Chem. Phys.98, 5612 (1993)ADSCrossRefGoogle Scholar
  14. [10]
    R. N. Schmid, E. Engel, R. M. Dreizler, P. Blaha and K. Schwarz, Adv. Qaunt. Chem. 33, 209 (1999)CrossRefGoogle Scholar
  15. [11]
    R. T. Sharp and K. G. Horton, Phys. Rev. 90, 317 (1953)MathSciNetADSCrossRefGoogle Scholar
  16. J. D. Talman and W. F. Shadwick, Phys. Rev. A14, 36 (1976)ADSCrossRefGoogle Scholar
  17. B. A. Shadwick, J. D. Talman and M. R. Norman, Comp. Phys. Commun. 54, 95 (1989)ADSCrossRefGoogle Scholar
  18. [12]
    A. Görling and M. Levy, Phys. Rev. A50, 196 (1994)ADSCrossRefGoogle Scholar
  19. [13]
    A. Facco Bonetti, E. Engel, R. N. Schmid and R. M. Dreizler, Subm. to Phys. Rev.Google Scholar
  20. [14]
    E. Engel and R. M. Dreizler, J. Comp. Chem. 20, 31 (1999)CrossRefGoogle Scholar
  21. [15]
    see e. g. R. M. Dreizler and E. Engel in Density Functionals: Theory and Applications, ed. D. Joubert (Springer Verlag, Berlin, 1998) p. 147CrossRefGoogle Scholar
  22. [16]
    see e. g. K. Burke and E. K. U. Gross in Density Functionals: Theory and Applications, ed. D. Joubert (Springer Verlag, Berlin, 1998) p. 116CrossRefGoogle Scholar
  23. [17]
    G. Vignale and W. Kohn in Electronic Density Functional Theory ed. J. F. Dobson, G. Vignale and M. P. Das (Plenum Press, New York,(1998) p. 199CrossRefGoogle Scholar
  24. [18]
    A. Henne, A. Toepfer, H. J. Lüdde and R. M. Dreizler, J. Phys. B:At. Mol. Phys. 19, L361 (1986)ADSCrossRefGoogle Scholar
  25. [19]
    M. Petersilka, U. J. Gossmann and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Reiner M Dreizler
    • 1
  1. 1.Institut für Theoretische PhysikJohann Wolfgang Goethe-Universität FrankfurtFrankfurt/MainGermany

Personalised recommendations