Antisense Approaches and the Modulation of Potassium Channel Function in the Cardiovascular System

  • Craig H. Gelband


Potassium channels are key regulators of resting membrane potential and tightly control the patterns of electrical excitability in cardiac myocytes and vascular smooth muscle cells. Under typical conditions of physiological variability in vivo, the level of K+ channel expression in cardiovascular membranes appears to be dynamically regulated to permit normal tissue-specific electrophysiological function. However, in some cardiovascular pathologies, as reviewed in other chapters in this book, alterations in K+ channels appear to contribute to, rather than buffer, abnormalities in cell excitation patterns. For example, mutations in myocardial K+ channels are linked to cardiac arrhythmias and sudden death (see Chapters 17 and 36), and in the pulmonary vasculature, the downregulation of K+ channels may contribute to the etiology of primary pulmonary hypertension (see Chapters 27 and 40). Thus, it is not surprising that tremendous efforts are being directed toward understanding the molecular mechanisms that govern the gene and protein expression levels of K+ channel subunits, as well as the phenotypic profile of K+ channels in cardiac yocytes and vascular smooth muscle cells. Similarly, new therapeutic approaches are being considered to treat ion channel abnormalities in cardiovascular disease states.


Vascular Smooth Muscle Cell Channel Expression Antisense Therapy Antisense Approach Single Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarwani, S., Heinert, G., Turner, I. L., and Kozlowski, R. Z., 1995, Differential K2+ channel distribution in smooth muscle cells isolated from the pulmonary arterial tree of the rat, Biochem. Biophys. Res. Commun. 208:183–189.PubMedCrossRefGoogle Scholar
  2. Beech, D. J., and Bolton, T. B., 1989, A voltage-dependent outward current with fast kinetics in single smooth muscle cells isolated from rabbit portal vein, J. Physiol (London) 412:397–414.Google Scholar
  3. Benham, C. D., and Bolton, T. B., 1986, Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit, J. Physiol. (London) 381:385–406.Google Scholar
  4. Berger, M. B., and Rusch, N. J., 1999, Voltage and calcium-gated potassium channels: Functional expression and therapeutic potential in the vasculature, in: Perspectives in Drug Discovery and Design (J. M. Sabatier and H. Dorbon, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, Vol. 15/16, pp. 313–332.Google Scholar
  5. Bohr, D. F., 1974, Reactivity of vascular smooth muscle from normal and hypertensive rats: Effect of several cations. Fed. Proc. 33:127–132.PubMedGoogle Scholar
  6. Bonnet, P., Rusch, N. J., and Harder, D. R., 1991, Characterization of an outward K2+ current in freshly dispersed cerebral arterial muscle cells, Pflügers. Arch. 418:292–296.PubMedCrossRefGoogle Scholar
  7. Chao, J., Zhang, J. J., Lin, K. F., and Chao, L., 1998, Adenovirus-mediated kallikrein gene delivery reverses salt-induced renal injury in Dahl salt-sensitive rats, Kidney Int. 54:1250–1260.PubMedCrossRefGoogle Scholar
  8. Cox, R. H., and Lozinskaya, I. M., 1995, Augmented calcium currents in mesenteric artery branches of the spontaneously hypertensive rat, Hypertension 26:1060–1064.PubMedCrossRefGoogle Scholar
  9. DeCoursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D., 1984, Voltage-gated K2+ channels in human T lymphocytes: A role in mitogenesis?, Nature 307:465–468.PubMedCrossRefGoogle Scholar
  10. England, S. K., Wooldridge, T. A., Stekiel, W. J., and Rusch, N. J., 1993, Enhanced single-channel K2+ current in arterial membranes from genetically hypertensive rats, Am. J. Physiol. 264:H1337–H1345.PubMedGoogle Scholar
  11. Evans, A. M., Osipenko, O. N., and Gurney, A. M., 1996, Properties of a novel K2+ current that is active at resting potential in rabbit pulmonary artery smooth muscle cells, J. Physiol. (London) 496:407–420.Google Scholar
  12. Feng, J., Wible, B., Li, G. R., and Nattel, S., 1997, Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid relayed rectifier K2+ current in cultured adult human atrial myocytes, Circ. Res. 80:572–579.PubMedCrossRefGoogle Scholar
  13. Fleischmann, B. K., Murray, R. K., and Kotlikoff, M. I., 1994, Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells, Proc. Natl. Acad. Sci. U.S.A. 91:11914–1198.PubMedCrossRefGoogle Scholar
  14. Folco, E., Mathur, R., Mori, Y., Buckett, P., and Koren, G., 1997, A cellular model for long QT syndrome.Trapping of heteromultimeric complexes consisting of truncated Kv1.1 potassium channel polypeptides and native Kv1.4 and Kv1.5 channels in the endoplasmic reticulum, J. Biol. Chem. 272:26505–26510.PubMedCrossRefGoogle Scholar
  15. Gelband, C. H., and Hume, J. R, 1992, Ionic currents in single smooth muscle cells of the canine renal artery, Circ. Res. 71:745–758.PubMedCrossRefGoogle Scholar
  16. Gelband, C. H., and Hume, J. R., 1995, [Ca2+]i inhibition of K2+ channels in canine renal artery. Novel mechanism for agonist-induced membrane depolarization, Circ. Res. 77:121–130.PubMedCrossRefGoogle Scholar
  17. Gelband, C. H., Reaves, P. Y., Evans, J., Wang, H., Katovich, M. J., and Raizada, M. K., 1999, Angiotensin II type 1 receptor antisense gene therapy prevents altered renal vascular calcium homeostasis in hypertension, Hypertension 33:360–365.PubMedCrossRefGoogle Scholar
  18. Hall, J. E, Brands, M. W., and Henegar, J. R., 1999, Angiotensin II and long-term arterial pressure regulation: The overriding dominance of the kidney, J. Am. Soc. Nephrol. 10(Suppl. 12):S258–S265.PubMedGoogle Scholar
  19. Hermsmeyer, K., 1976, Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension, Circ. Res. 38:362–267.PubMedCrossRefGoogle Scholar
  20. Hume, J. R., and Leblanc, N., 1989, Macroscopic K2+ currents in single smooth muscle cells of the rabbit portal vein, J. Physiol. (London) 413:49–73.Google Scholar
  21. Ishikawa, T., Hume, J. R., and Keef, K. D., 1993, Modulation of K2+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells, J. Physiol. (London) 468:379–400.Google Scholar
  22. Iyer, S. N., Lu, D., Katovich, M. J., and Raizada, M. K., 1996, Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense, Proc. Natl. Acad. Sci. U.S.A. 93:9960–9965.PubMedCrossRefGoogle Scholar
  23. Jan, L. Y., and Jan, Y. N., 1992, Structural elements involved in specific K2+ channel functions, Annu. Rev. Physiol. 54:537–555.PubMedCrossRefGoogle Scholar
  24. Jones, A. W., 1973, Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats: Influences of aldosterone, norepinephrine, and angiotensin, Circ. Res. 33:563–572.PubMedCrossRefGoogle Scholar
  25. Katovich, M. J., Gelband, C. H., Reaves, P. Y., Wang, H., Dang, H., and Raizada, M. K., 1999, Reversal of hypertension by retroviral-mediated (LNSV) delivery of angiotensin II type 1 receptor antisense (AT1 R-AS) in the adult spontaneously hypertensive rat (SHR). Am. J. Physiol. 277:H1260–H1264.PubMedGoogle Scholar
  26. Knot, H. J., and Nelson, M. T., 1995, Regulation of membrane potential and diameter by voltage-dependent K2+ channels in rabbit myogenic cerebral arteries, Am. J. Physiol. 269:H348–H355.PubMedGoogle Scholar
  27. Krieger, J. E., and Dzau, V. J., 1991, Molecular biology of hypertension. Hypertension 18:S13–S17.CrossRefGoogle Scholar
  28. Lamb, F. S., and Webb, R. C., 1989, Regenerative electrical activity and arterial contraction in hypertensive rats, Hypertension 13:70–76.PubMedCrossRefGoogle Scholar
  29. Lepple-Wienhues, A., Berweck, S., Bohmig, M., Leo, C. P., Meyling, B., Garbe, C., and Wiederholt, M., 1996, K2+ channels and the intracellular calcium signal in human melanoma cell proliferation, J. Membr. Biol. 151:149–157.PubMedCrossRefGoogle Scholar
  30. Lin, K. F., Chao, J., and Chao, L., 1999, Atrial natriuretic peptide gene delivery reduces stroke-induced mortality rate in Dahl salt-sensitive rats, Hypertension 33:219–224.PubMedCrossRefGoogle Scholar
  31. Liu, Y., Pleyte, K., Knaus, H.-G., and Rusch, N. J., 1997, Increased expression of Ca2-sensitive K2+ channels in aorta of hypertensive rats, Hypertension 30:1403–1409.PubMedCrossRefGoogle Scholar
  32. London, B., Jeron, A., Zhou, J. Buckett, P., Han, X., Mitchell, G. F., and Koren, G., 1998, Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel, Proc. Natl. Acad. Sci. U.S.A. 95:2926–2931.PubMedCrossRefGoogle Scholar
  33. Lozinskaya, I. M., and Cox, R. H., 1997, Effects of age on Ca2+ currents in small mesenteric artery myocytes from Wistar-Kyoto and spontaneously hypertensive rats, Hypertension 29:1329–1336.PubMedCrossRefGoogle Scholar
  34. Lu, D., and Raizada, M. K., 1995, Delivery of angiotensin II type 1 receptor antisense inhibits angiotensin action in neurons from hypertensive rat brain, Proc. Natl. Acad. Sci. U.S.A. 92:2914–2918.PubMedCrossRefGoogle Scholar
  35. Lu, D., Yu, K., and Raizada, M. K., 1995, Retrovirus-mediated transfer of an angiotensin type I receptor (AT1-R) antisense sequence decreases AT-Rs and angiotensin II action in astroglial and neuronal cells in primary cultures from the brain, Proc. Natl. Acad. Sci. U.S.A. 92:1162–1166.PubMedCrossRefGoogle Scholar
  36. Lu, D., Raizada, M. K., Iyer, S., Reaves, P., Yang, H., and Katovich, M. J., 1997, Losartan versus gene therapy: Chronic control of high blood pressure in spontaneously hypertensive rats, Hypertension 30:363–370.PubMedCrossRefGoogle Scholar
  37. Lu, D., Yang, H., and Raizada, M. K., 1998, Attenuation of ANG II actions by adenovirus delivery of AT receptor antisense in neurons and SMC, Am. J. Physiol. 274:H719–H727.PubMedGoogle Scholar
  38. Martens, J. R., and Gelband, C. H., 1996, Alterations in rat interlobar artery membrane potential and K2+ channels in genetic and nongenetic hypertension, Circ. Res. 79:295–301.PubMedCrossRefGoogle Scholar
  39. Martens, J. R., and Gelband, C. H., 1998, Ion channels in vascular smooth muscle: Alterations in essential hypertension, Proc. Soc. Exp. Biol. Med. 218:192–203.PubMedGoogle Scholar
  40. Martens, J. R., Reaves, P. Y., Lu, D., Katovich, M. J., Berecek, K. H., Bishop, S. P., Raizada, M. K., and Gelband, C. H., 1998, Prevention of renovascular and cardiac pathophysiological changes in hypertension by angiotensin II type 1 receptor antisense gene therapy, Proc. Natl. Acad. Sci. U.S.A. 95:2664–2669.PubMedCrossRefGoogle Scholar
  41. McDonald, T. V., Yu, Z., Ming, Z., Paima, E., Meyers, M. B., Wang, K. W. Goldstein, S. A., and Fishman, G. I., 1997, A minK-HERG complex regulates the cardiac potassium current I(Kr), Nature 388:289–292.PubMedCrossRefGoogle Scholar
  42. Mulvany, M. J., 1990, Structure and function of small arteries in hypertension, J. Hypertens. Suppl. 8:S225–S232.PubMedGoogle Scholar
  43. Mulvany, M. J., and Aalkjaer, C., 1990, Structure and function of small arteries, Physiol. Rev. 70:921–961.PubMedGoogle Scholar
  44. Nakamura, Y. T., Artman, M., Rudy, B., and Coetzee, W. A., 1998, Inhibition of rat ventricular IK1 with antisense oligonucleotides targeted to Kir2.1 mRNA, Am. J. Physiol. 274:H892–H900.PubMedGoogle Scholar
  45. Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol. 268:C799–C822.PubMedGoogle Scholar
  46. Neylon, C. B., Avdonin, P. V., Larsen, M. A., and Bobik, A., 1994, Rat aortic smooth muscle cells expressing charybdotoxin-sensitive potassium channels exhibit enhanced proliferative responses, Clin. Exp. Pharmacol. Physiol. 21:117–120.PubMedCrossRefGoogle Scholar
  47. Ohya, Y., Abe, I., Fujii, K., Takata, Y., and Fujishima, M., 1993, Voltage-dependent Ca2+ channels in resistance arteries from spontaneously hypertensive rats, Circ. Res. 73:1090–1099.PubMedCrossRefGoogle Scholar
  48. Ohya, Y., Abe, I., Fujii, K., and Fujishima, M., 1996, Membrane channels in smooth muscle cells of arteries from hypertensive rats, in: Smooth Muscle Excitation (T. B. Bolton and T. Tomita, eds.), Academic Press, San Diego, pp. 459–465.Google Scholar
  49. Okabe, K., Kitamura, K., and Kuriyama, H., 1987, Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery, Pflügers Arch. 409:561–568.PubMedCrossRefGoogle Scholar
  50. Post, J. M., Gelband, C. H., and Hume, J. R., 1995, [Ca2+]i inhibition of K2+ channels in canine pulmonary artery: Novel mechanism for hypoxia-induced membrane depolarization, Circ. Res. 77:131–139.PubMedCrossRefGoogle Scholar
  51. Raizada, M. K., Katovich, M. J., Wang, H., and Gelband, C. H., 1999, Is antisense gene therapy a step in the right direction in the control of hypertension? Am. J. Physiol. 277:H423–H432.PubMedGoogle Scholar
  52. Regan, C. P., Bishop, S. P., and Berecek, K. H., 1997, Early, short-term treatment with captopril permanently attenuates cardiovascular changes in spontaneously hypertensive rats, Clin. Exp. Hypertens. 19:1161–1177.PubMedCrossRefGoogle Scholar
  53. Rusch, N. J., and Hermsmeyer, K., 1988, Calcium currents are altered in the vascular muscle cell membrane of spontaneously hypertensive rats, Circ. Res. 63:997–1009.PubMedCrossRefGoogle Scholar
  54. Rusch, N. J., De Lucena, R. G., Wooldridge, T. A., England, S. K., and Cowley, A. W., Jr., 1992, A Ca2+-dependent K2+ current is enhanced in arterial membranes of hypertensive rats, Hypertension 19:301–307.PubMedCrossRefGoogle Scholar
  55. Sanguinetti, M. C., Curran M. E., Zou, A., Shen, J., Spector, P. S., Atkinson, D. L., and Keating, M. T., 1996, Spectrum of HERG K2+ channel dysfunction in an inherited cardiac arrhythmia, Proc. Natl. Acad. Sci., U.S.A. 93:2208–2212.PubMedCrossRefGoogle Scholar
  56. Smirnov, S. V., and Aaronson, P. I., 1992a, Ca2+ currents in single myocytes from human mesenteric arteries: Evidence for a physiological role of L-type channels, J. Physiol. (London) 457:455–475.Google Scholar
  57. Smirnov, S. V., and Aaronson, P. I., 1992b, Ca2+-activated and voltage-gated K2+ currents in smooth muscle cells isolated from human mesenteric arteries, J. Physiol. (London) 457:431–454.Google Scholar
  58. Stekiel, W. J., 1989, Electrophysiological mechanisms of force development by vascular smooth muscle membrane in hypertension, in: Blood Vessel Changes in Hypertension (K. M. L. W. Lee, ed.), Boca Raton, CRC Press, Boca Raton, Florida, pp. 127–170.Google Scholar
  59. Toro, L., and Stefani, E., 1987, Ca2+ and K2+ current in cultured vascular smooth muscle cells from rat aorta, Pflügers Arch 408:417–419.PubMedCrossRefGoogle Scholar
  60. Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295:68–71.PubMedCrossRefGoogle Scholar
  61. Wang, L., Xu, B., White, R. E., and Lu, L., 1997, Growth factor-mediated K2+ channel activity associated with human myeloblastic ML-1 cell proliferation. Am. J. Physiol. 273:0657–0665.Google Scholar
  62. Wang, Z., Feng, J., Shi, H., Pond, A., Nerbonne, J. M., and Nattel, S., 1999, Potential molecular basis of different physiological properties of transient outward K2+ current in rabbit and human atrial myocytes, Circ. Res. 84:551–561.PubMedCrossRefGoogle Scholar
  63. Wilde, D. W., and Lee, K. S., 1989, Outward potassium currents in freshly isolated smooth muscle cell of dog coronary arteries, Circ. Res. 65:1718–1734.PubMedCrossRefGoogle Scholar
  64. Wilde, D. W., Furspan, P. B., and Szocik, J. F., 1994, Calcium current in smooth muscle cells from normotensive and genetically hypertensive rats, Hypertension 24:739–746.PubMedCrossRefGoogle Scholar
  65. Wonderlin, W. F., and Strobl, J. S., 1996, Potassium channels, proliferation and G1 progression, J. Membr. Biol. 154:91–107.PubMedCrossRefGoogle Scholar
  66. Yamazaki, T., and Yazaki, Y., 1999, Role of tissue angiotensin II in myocardial remodeling induced by mechanical stress, J. Hum. Hypertens. 12:S43–S47.CrossRefGoogle Scholar
  67. Yang, T., Kuppershmidt, S., and Roden, D. M., 1995, Anti-minK antisense decreases the amplitude of the rapidly activating cardiac delayed rectifier K2+ current. Circ. Res. 77:1246–1253.PubMedCrossRefGoogle Scholar
  68. Yokoshiki, H., Sunagawa, M., Seki, T. M., and Sperelakis, N., 1999, Antisense oligodeoxynucleotides of sulfonylurea receptors inhibit ATP-sensitive K2+ channels in cultured neonatal rat ventricular cells, Pflügers Archiv. 437:400–408.PubMedCrossRefGoogle Scholar
  69. Yuan, X. J., 1995, Voltage-gated K2+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes, Circ. Res. 77:370–378.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Craig H. Gelband
    • 1
  1. 1.Department of Physiology, College of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations