Skip to main content

Altered Expression and Function of Kv Channels in Primary Pulmonary Hypertension

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

Primary pulmonary hypertension (PPH) is a progressive, fatal disease that is characterized by a sustained elevation of pulmonary arterial pressure and pulmonary vascular resistance from an unknown cause. The incidence of PPH is about 1–2 per million in the general population, and the mean life expectancy after diagnosis is 2.5 years. Although PPH can occur in individuals of all ages and both genders, it predominantly affects women (Rubin, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albarwani, S., Robertson, B. E., Nye, P. C. G., and Kozlowski, R. Z., 1994, Biophysical properties of Ca2+-and Mg2+-ATP-activated K+ channels in pulmonary arterial smooth muscle cells isolated from the rat,Pflügers Arch. 428:446–454.

    Article  PubMed  CAS  Google Scholar 

  • Allbritton, N. L., Ozncea, E., Kuhn, M. A., and Meyer, T., 1994, Source of nuclear calcium signals, Proc. Natl.Acad. Sci. U.S.A. 91:12458–12462.

    Article  PubMed  CAS  Google Scholar 

  • Archer, S. L., Huang, J. M. C., Hampl, V., Nelson, D. P., Schultz, P. J., and Weir, E. K., 1994, Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 91:7583–7587.

    Article  PubMed  CAS  Google Scholar 

  • Archer, S. L., Souil, E., Dinh-Xuan, A. T., Schremmer, B., Mercier, J. C., El Yaagoubi, A., Nguyen-Huu, L., Reeve, H. L., and Hampl, V., 1998, Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes, J. Clin. Invest. 101:2319–2330.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1993, Inositol triphosphate and calcium signaling, Nature 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1995, Calcium signalling and cell proliferation, BioEssays 17(6):491–500.

    Article  PubMed  CAS  Google Scholar 

  • Blaustein, M. P., 1993, Physiological effects of endogenous ouabain: Control of intracellular Ca2+ stores and cell responsiveness, Am. J. Physiol. 264:0367–0387.

    Google Scholar 

  • Brink, C., Cerrina, C., Labat, C., Beley, J., and Benveniste, J., 1988, The effects of contractile agonists on isolated pulmonary arterial and venous muscle preparations derived from patients with primary pulmonary hypertension, Am. Rev. Respir. Dis. 137 (Part 2):A106.

    Article  Google Scholar 

  • Chandy, K. G., and G. A. Gutman., 1995, Voltage-gated K+ channel genes, in: Handbook of Receptors and Channels: Ligand- and Voltage-Gated Ion Channels (R. A. North, ed.), CRC Press, Boca Raton, Florida, pp. 1–71.

    Google Scholar 

  • Christman, B. W., McPherson, C. D., Newman, J. H., King, G. A., Bernard, G. R., Groves, B. M., and Loyd, J. E., 1992, An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension, N. Engl. J. Med. 327:70–75.

    Article  PubMed  CAS  Google Scholar 

  • Chung, S., Saal, D. B., and Kaczmarek, L. K., 1995, Elimination of potassium channel expression by antisense oligonucleotides in a pituitary cell line, Proc. Natl. Acad. Sci. U.S.A. 92:5955–5959.

    Article  PubMed  CAS  Google Scholar 

  • De Biasi, M., Wang, Z., Accili, E., Wible, B., and Fedida, D., 1997, Open channel block of human heart hKv1.5 by the β-subunit hKvβ1.2, Am. J. Physiol. 272:H2932–H2941.

    PubMed  Google Scholar 

  • Dinh-Xuan, A. T., Higenbottam, T. W., Clelland, C. A., Pepke-Zaba, J., Cremona, G., Butt, A. Y., Large, S. R., Wells, F. C., and Wallwork, J., 1991, Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease, N. Engl. J. Med. 324:1539–1547.

    Article  PubMed  CAS  Google Scholar 

  • England, S. K., Uebele, V. N., Kodali, J., Bennett, R. P., and Tamkun, M. M., 1995, A novel K+ channel β-subunit (hKvβl.3) is produced via alternative mRNA splicing, J. Biol. Chem. 270:28531–28534.

    Article  PubMed  CAS  Google Scholar 

  • Evans, A. M., Osipenko, O. N., and Gurney, A. M., 1996, Properties of a novel K+ current that is active at resting potential in rabbit pulmonary artery smooth muscle cells, J. Physiol. 496:407–420.

    PubMed  CAS  Google Scholar 

  • Feng, J., Wible, B., Li, G.-R., Wang, Z., and Nattel, S., 1997, The antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes, Circ. Res. 80:572–579.

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann, B. K., Murray, R. K., and Kotlikoff, M. I., 1994, Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells, Proc. Natl. Acad. Sci. U.S.A. 91:11914–11918.

    Article  PubMed  CAS  Google Scholar 

  • Ganitkevich, V. Y., and Isenberg, G., 1993, Membrane potential modulates inositol 1,4,5-triphosphate-mediated Ca2+ transients in guinea-pig coronary myocytes, J. Physiol. 470:35–44.

    PubMed  CAS  Google Scholar 

  • Giaid, A., and Saleh, D., 1995, Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension, N. Engl. J. Med. 333:214–221.

    Article  PubMed  CAS  Google Scholar 

  • Giaid, A., Yanagisawa, M., Langleben, D., Michel, R. P., Levy, R., Shennib, H., Kimura, S., Masaki, T., Duguid, W. P., and Stewart D. J., 1993, Expression of endothelium-1 in the lungs of patients with pulmonary hypertension, N. Engl. J. Med. 328:1732–1739.

    Article  PubMed  CAS  Google Scholar 

  • Hishikawa, K., Nakaki, T., Marumo, T., Hayashi, M., Suzuki, H., Kata, R., and Saruta, T., 1994, Pressure promotes DNA synthesis in rat cultured vascular smooth muscle cells, J. Clin. Invest. 93:1975–1980.

    Article  PubMed  CAS  Google Scholar 

  • Isom, L. L., DeJongh, K. S., and Catterall, W. A., 1994, Auxiliary subunits of voltage-gated ion channels, Neuron 12:1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Kolpakov, V., Rekhtar, M.D., Gordon, D., Wang, W.H., and Kulik, T.J., 1995, Effect of mechanical forces on growth and matrix protein synthesis in the in vitro pulmonary artery: Analysis of the role of individual cell types, Circ. Res. 77:823–831.

    Article  PubMed  CAS  Google Scholar 

  • Kukuljan, M., Rojas, E., Catt, K. J., and Stojilkovic, S. S., 1994, Membrane potential regulates inositol 1,4,5-triphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs, J. Biol. Chem. 269:4860–4865.

    PubMed  CAS  Google Scholar 

  • Magnier-Gaubil, C., Herbert, J. M., Quarck, R, Papp, B., Corvazier, E., Wuytack, F., Levy-Toledano, S., and Enouf, J., 1996, Smooth muscle cell cycle and proliferation: Relationship between calcium influx and sarco-endoplasmic reticulum Ca2+ ATPase regulation, J. Biol. Chem. 271:27788–27794.

    Article  PubMed  CAS  Google Scholar 

  • McCobb, D. P., Fowler, N. L., Featherstone, T., Lingle, C. J., Saito, M., Krause, J. E., and Salkoff, L., 1995, A human calcium-activated potassium channel gene expressed in vascular smooth muscle, Am. J. Physiol. 269:H767–H777.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol. 268:C799–C822.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Patlak, J. B., Worley, J. F., and Standen, N. B., 1990, Calcium channels, potassium channels, and voltage-dependence of arterial smooth muscle tone. Am. J. Physiol. 259:C3–C18.

    PubMed  CAS  Google Scholar 

  • Palevsky, H. I., Schloo, B. L., Pietra, G. G., Weber, K. T., Janicki, J. S., and Fishman, A. P., 1989, Primary pulmonary hypertension, vascular structure, morphometry, and responsiveness to vasodilator agents, Circulation 80:1207–1221.

    Article  PubMed  CAS  Google Scholar 

  • Peng, W., Karwande, S. V., Hoidal, J. R., and Farrukh, I. S., 1996, Potassium currents in cultered human pulmonary arterial smooth muscle cells, J. Appl. Physiol. 80:1187–1196.

    PubMed  CAS  Google Scholar 

  • Pietra, G. G., 1997, The pathology of primary pulmonary hypertension, in: Primary Pulmonary Hypertension (L. J. Rubin and S. Rich, eds.), Marcel Dekker, New York, pp. 19–61.

    Google Scholar 

  • Post, J. M., Gelband, C. H., and Hume, J. R., 1995, [Ca2+]i- inhibition of K+ channels in canine pulmonary artery: Novel mechanisms for hypoxia-induced membrane depolarization, Circ. Res. 77:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Rettig, J., Heinemann, S. H., Wunder, F., Lorra, C., Parcej, D. N., Dolly, J. O., and Pongs, O., 1994, Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit, Nature 369:289– 294.

    Article  PubMed  CAS  Google Scholar 

  • Rich, S., Kaufmann, E., and Levy, P. S., 1992, The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension, N. Engl. J. Med. 327:76–81.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, L. J., 1997, Primary pulmonary hypertension, N. Engl. J. Med. 336:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Short, A. D., Bian, J., Ghosh, T. K., Waldron, R. T., Rybak, S. L, and Gill, D. L., 1993, Intracellular Ca2+ pool content is linked to control of cell growth, Proc. Natl. Acad. Sci. U.S.A. 90:4986–4990.

    Article  PubMed  CAS  Google Scholar 

  • Steudel, W., Ichinose, F., Huang, P. L., Hurford, W. E., Jones, R. C., Bevan, J. A., Fishman, M. C., and Zapol, W. M., 1997, Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene, Circ. Res. 81:34–41.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Schuster, D. P., Davis, E. C., Patterson, G. A., and Botney, M. D., 1996, The role of vascular injury and hemodynamics in rat pulmonary artery remodeling, J. Clin. Invest. 98:434–442.

    Article  PubMed  CAS  Google Scholar 

  • Voelkel, N. F., Tuder, R. M., and Weir, E. K., 1997, Pathophysiology of primary pulmonary hypertension: From physiology to molecular mechanisms, in: Primary Pulmonary Hypertension (L. J. Rubin and S. Rich, eds.), Marcel Dekker, New York, pp. 83–129.

    Google Scholar 

  • Wagenvoort, C. A., 1960, Vasoconstriction and media hypertrophy in pulmonary hypertension, Circulation 22:535–546.

    Article  PubMed  CAS  Google Scholar 

  • Wood, P., 1958, Pulmonary hypertension with special reference to the vasoconstrictive factor, Br. Heart J. 20:557–570.

    Article  PubMed  CAS  Google Scholar 

  • Yu, S. P., Yeh, C.-H., Sensi, S. L., Gwag, B. J., Canzoniero, L. M. T., Farhangrazi, Z. S., Ying, H. S., Tian, M., Dugan, L. L., and Choi, D. W., 1997, Mediation of neuronal apoptosis by enhancement of outward potassium current, Science 278:114–117.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X.-J., 1995, Voltage-gated K+ currents regulate resting membrane potential and (Ca2+]i in pulmonary arterial myocytes, Circ. Res. 77:370–378.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X.-J., 1998, Mechanisms of hypoxic pulmonary vasoconstriction: The role of oxygen-sensitive voltage-gated potassium channels, in: Oxygen Regulation and Ion Channels and Gene Expression (J. Lopez-Barneo and E. K. Weir, eds.), Futura Publishing Company, Armonk, New York, pp. 207–233.

    Google Scholar 

  • Yuan, X.-J., Tod, M. L., Rubin, L. J., and Blaustein, M. P., 1996, NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels, Proc. Natl. Acad. Sci. U.S.A. 93:10489–10494.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J. X.-J., Aldinger, A. M., Huhaszova, M., Wang, J., Conte, J. V., Gaine, S. P., Orens, J. B., and Rubin, L. J., 1998a, Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension, Circulation 98:1400–1406.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X.-J., Wang, J., Juhaszova, M., Gaine, S. A., and Rubin, L. J., 1998b, Attenuated K+ channel gene transcription in primary pulmonary hypertension, Lancet 351:726–727.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X.-J., Wang, J., Juhaszova, M., Golovina, V. A., and Rubin, L. J., 1998c, Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells, Am. J. Physiol. 274:L621-L635.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yuan, J.XJ., Rubin, L.J. (2001). Altered Expression and Function of Kv Channels in Primary Pulmonary Hypertension. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics