Skip to main content

Activation of Vascular Smooth Muscle K+Channels by Endothelium-Derived Factors

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

Endothelial cells synthesize and release vasoactive mediators in response to various neurohumoral substances (e.g., acetylcholine, ATP, bradykinin, thrombin) and physical stimuli (e.g., shear stress exerted by the flowing blood) (Furchgott and Vanhoutte, 1989). Nitric oxide (NO) produced by the L-arginine—NO synthase pathway and prostacyclin produced from arachidonic acid by cyclooxygenase have been identified as potent endothelium-derived vasodilators (Moncada et al., 1976; Moncada and Vane, 1979; Furchgott and Zawadzki, 1980; Palmer et al., 1987, Palmer 1988). However, not all endothelium-dependent relaxations can be fully explained by the release of either NO or prostacyclin. Indeed, another unidentified substance(s) which hyperpolarizes the underlying vascular smooth muscle cells, termed endothelium-derived hyperpolarizing factor (EDHF), may contribute to endothelium-dependent relaxations (Furchgott and Vanhoutte, 1989; Komori and Vanhoutte, 1990; Félétou and Vanhoutte, 1996a; Mombouli and Vanhoutte, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeagbo, A. S. O., and Malik, K. U., 1990, Mechanism of vascular actions of prostacyclin in the rat isolated perfused mesenteric arteries, J. Pharmacol. Exp. Ther. 252:26–34.

    PubMed  CAS  Google Scholar 

  • Adeagbo, A. S. O., and Malik, K. U., 1991, Contribution of K + channels to arachidonic acid-induced endothelium-dependent vasodilation in rat isolated perfused mesenteric arteries, J. Pharmacol. Exp. Ther. 258:452–458.

    PubMed  CAS  Google Scholar 

  • Adeagbo, A. S. O., and Triggle, C. R., 1993, Varying extracellular [K +]: A functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed, J. Cardiovasc. Pharmacol 21:423–429.

    Article  PubMed  CAS  Google Scholar 

  • Akatsuka, Y., Egashira, K., Katsuda, Y., Narishige, T., Ueno, H., Shimokawa, H., and Takeshita, A., 1994, ATP-sensitive potassium channels are involved in adenosine A2 receptor mediated coronary vasodilatation, Cardiovasc. Res. 28:906–911.

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Galicia, M., Drummond, H. A., Reddy, K. K., Falck, J. R., and Roman, R. J., 1997, Inhibition of 20-HETE production contributes to the vascular responses to nitric oxide, Hypertension 29:320–325.

    Article  PubMed  CAS  Google Scholar 

  • Archer, S. L., Huang, J. M. C., Hampl, V, Nelson, D. P., Shultz, P. J., and Weir, E. K., 1994, Nitric oxide and cyclic-GMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cyclic-GMP-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 91:7583–7587.

    Article  PubMed  CAS  Google Scholar 

  • Archer, S. L., Huang, J. M. C., Reeve, H. L., Hampl, V., Tolarova S., Michelakis, E., and Weir, E. K., 1996, Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia, Circ. Res. 78:431–442.

    Article  PubMed  CAS  Google Scholar 

  • Banks, M., Wei, C.-M., Kim, C. H., Burnett, J. C., and Miller, V. M., 1996, Mechanism of relaxations to C-type natriuretic peptide in veins, Am. J. Physiol. 271:H1907–H1911.

    PubMed  CAS  Google Scholar 

  • Barlow, R. S., and White, R. E., 1998, Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity, Am. J. Physiol. 44:H1283–H1289.

    Google Scholar 

  • Bauersachs, J., Hecker, M., and Busse, R., 1994, Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450-derived arachidonic acid metabolite in the coronary microcirculation, Br. J. Pharmacol 113:1548–1553.

    Article  PubMed  CAS  Google Scholar 

  • Beech, D., and Bolton, T. B., 1989, Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein, Br. J. Pharmacol. 98:851–854.

    Article  PubMed  CAS  Google Scholar 

  • Beny, J.-L., 1990, Endothelial and smooth muscle cells hyperpolarized by bradykinin are not dye coupled. Am. J. Physiol. 258:H836–H841.

    PubMed  CAS  Google Scholar 

  • Beny, J.-L., and Brunet, P. C., 1988 Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta, J. Physiol. (London) 398:277–289.

    CAS  Google Scholar 

  • Beny, J. L., and Chabaud, F., 1996, Kinins and endothelium-dependent hyperpolarization in porcine coronary arteries, in: Endothelium-Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 41–50.

    Google Scholar 

  • Bény, J. L., and von der Weid, P. Y., 1991, Hydrogen peroxide, an endogenous smooth muscle cell hyperpolarizing factor, Biochem. Biophys. Res. Commun. 176:378–384.

    Article  PubMed  Google Scholar 

  • Berg, T., and Koteng, O., 1997, Signalling pathway in bradykinin- and nitric oxide-induced hypotension in the normotensive rat; role of K+-channels, Br. J. Pharmacol 121:1113–1120.

    Article  PubMed  CAS  Google Scholar 

  • Bialecki, R. A., and Stinson-Fisher, C., 1995, KCa channel antagonists reduce NO donor-mediated relaxation of vascular and tracheal smooth muscle, Am. J. Physiol. 12:L152–L159.

    Google Scholar 

  • Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., and Cohen, R. A., 1994, Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle cells, Nature 368:850–853.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, T. B., Lang, R. J., and Takewaki, T., 1984, Mechanism of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery, J. Physiol. 351:549–572.

    PubMed  CAS  Google Scholar 

  • Borda, E. S., Sterin-Borda, L., Gimeno, M. F., Lazzari, M. A., and Gimeno, A. C., 1983, The stimulatory effect of prostacyclin (PGI2) on isolated rabbit and rat aorta is probably associated to the generation of a thromboxane A2 (TXA2) “like material,” Arch. Int. Pharmacodyn. Ther. 261:79–89.

    PubMed  CAS  Google Scholar 

  • Brayden, J. E.,1990, Membrane hyperpolarisation is a mechanism of endothelium-dependent cerebral vasodilation, Am. J. Physiol. 259:H668–H673.

    PubMed  CAS  Google Scholar 

  • Brayden, J. E., and Murphy, M. E., 1996, Potassium channels activated by endothelium-derived factors in mesenteric and cerebral resistance arteries, in: Endothelium-Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 137–142.

    Google Scholar 

  • Bredt, D. S., and Snyder, S. H., 1990, Isolation of nitric oxide synthase, a calmodulin-requiring enzyme, Proc. Natl. Acad. Sci. U.S.A. 87:682–685.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, P. C., and Beny, J.-L. 1989. Substance P and bradykinin hyperpolarize pig coronary artery endothelial cells in primary culture, Blood Vessels 26:228–234.

    PubMed  CAS  Google Scholar 

  • Busse, R., Fichtner, H., Luckhoff, A., and Kohlhardt, M., 1988, Hyperpolarisation and increased free calcium in acetylcholine-stimulated endothelial cells, Am. J. Physiol. 255:H965–H969.

    PubMed  CAS  Google Scholar 

  • Bychkov, R., Gollasch, M., Steinke, T., Ried, C., Luft, F. C., and Haller, H., 1998, Calcium-activated potassium channels and nitrate-induced vasodilation in human coronary arteries, J. Pharmacol. Exp. Ther. 285:293–298.

    PubMed  CAS  Google Scholar 

  • Cabell, F., Weiss, D. S., and Price, J. M., 1994, Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca2+ -activated K+ channels, Am. J. Physiol. 36:H1455–H1460.

    Google Scholar 

  • Cai, W. Q., Bodin, P., Loesch, A., Sexton, A., and Burnstock, G., 1993, Endothelium of human umbilical blood vessels—Ultrastructural immunolocalization of neuropeptides, J. Vasc. Res. 30:348–355.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, W. B., Gebremedhin, D., Pratt, P. F., Harder, D. R., 1996, Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factor, Circ. Res. 78:415–423.

    Article  PubMed  CAS  Google Scholar 

  • Carrier, G. O., Fuchs, L. C., Winecoff, A. P., Giulumian, A. D., and White, R. E., 1997, Nitrovasodilators relax mesenteric microvessels by cyclic-GMP-induced stimulation of Ca-activated K channels, Am. J. Physiol. 42:H76–H84.

    Google Scholar 

  • Caudill, T. K., Resta, T. C., Kanagy, N. L., and Walker, B. R., 1998, Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia, Am. J. Physiol. 44:1025–1030.

    Google Scholar 

  • Chandy, K. G., and Gutman, G. A., 1995, Voltage-gated potassium channel genes, in Ligand- and Voltage Gated Ion Channels (R. A. North, ed.), CRC Press, Boca Raton, pp. 2–71.

    Google Scholar 

  • Chataigneau T., Félétou M., Duhault J., and Vanhoutte P. M., 1998a, Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarisation in the guinea-pig carotid artery, Br. J. Pharmacol. 123:574–580.

    Article  PubMed  CAS  Google Scholar 

  • Chataigneau T., Félétou, M., Thollon, C.,. Villeneuve, N., Vilaine, J.-P., Duhault, J., and Vanhoutte., P. M., 1998b, Cannabinoid CB1 receptor and endothelium-dependent hyperpolarisation in guinea-pig carotid, rat mesenteric and porcine coronary arteries, Br. J. Pharmacol. 123:968–974.

    Article  PubMed  CAS  Google Scholar 

  • Chaytor, A. Y., Evens, W. H., and Griffith T. M., 1998, Central role of heterocellular gap junction communication in endothelium-dependent relaxations of rabbit arteries. J. Physiol. (London) 508: 561–573.

    Article  CAS  Google Scholar 

  • Chen, G., and Cheung, D. W., 1997, Effects of K+ channel blockers on Ach-induced hyperpolarization and relaxation in mesenteric arteries, Am. J. Physiol. 41:H2306–H2312.

    Google Scholar 

  • Chen, G., and Suzuki, H., 1989a, Some electrical properties of the endothelium-dependent hyperpolarisation recorded from rat arterial smooth muscle cells, J. Physiol. 410:91–106.

    PubMed  CAS  Google Scholar 

  • Chen, G., and Suzuki, H., 1989b, Direct and indirect action of acetylcholine and histamine on intrapulmonary artery and vein smooth muscles of the rat, Jpn. J. Physiol. 39:51–65.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., and Suzuki, H., 1990, Calcium dependency of the endothelium-dependent hyperpolarisation in smooth muscle cells of the rabbit carotid artery, J. Physiol. 421:521–534.

    PubMed  CAS  Google Scholar 

  • Chen, G., Suzuki, H., and Weston, A. H., 1988, Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels, Br. J. Pharmacol. 95:1165–1174.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Yamamoto, Y., Miwa, K., and Suzuki, H., 1991, Hyperpolarisation of arterial smooth muscle induced by endothelial humoral substances, Am. J. Physiol. 260:H1888–H1892.

    PubMed  CAS  Google Scholar 

  • Clapp, L. H., Turcato, S., Hall, S., and Baloch, M., 1998, Evidence that Ca2+-activated K+ channels play a major role in mediating the vascular effects of iloprost and cicaprost, Eur. J. Pharmacol. 356:215–224.

    Article  PubMed  CAS  Google Scholar 

  • Coceani, F., and Kelsey, L., 1997, Carbon monoxide formation in the ductus arteriosus in the lamb: Implications for the regulation of muscle tone, Br. J. Pharmacol. 120:599–608.

    Article  PubMed  CAS  Google Scholar 

  • Coceani, F., Kelsey, L., and Seidlitz, E., 1996a, Carbon monoxide-induced relaxation of the ductus arteriosus in the lamb: Evidence against the prime role of guanylyl cyclase, Br. J. Pharmacol. 118:1689–1696.

    Article  PubMed  CAS  Google Scholar 

  • Coceani, F., Kelsey, L., Seidlitz, E., and Korzekwa, K., 1996b, Inhibition of the contraction of the ductus arteriosus to oxygen by 1-aminobenzotriazole, a mechanism-based inactivation of cytochrome P-450, Br. J. Pharmacol 117:1586–1592.

    Article  PubMed  CAS  Google Scholar 

  • Cocks, T. M., King, S. J., and Angus, J. A., 1990, Glibenclamide is a competitive inhibitor of the thromboxane A2 receptor in dog coronary artery in vitro, Br. J. Pharmacol. 100:375–378.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, R. A., and Vanhoutte, P. M., 1995, Endothelium-dependent hyperpolarization—beyond nitric oxide and cyclic GMP, Circulation 92:3337–3349.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, R. A., Plane, F., Najibi, S., Huk, I., Malinski, T., and Garland, C. J., 1997, Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarisation of the rabbit carotid artery, Proc. Natl. Acad. Sci. U.S.A. 94:4193–4198.

    Article  PubMed  CAS  Google Scholar 

  • Corriu, C., Félétou, M., Canet, E., and Vanhoutte, P. M. 1996a, Endothelium-derived factors and hyperpolarisations of the isolated carotid artery of the guinea-pig, Br. J. Pharmacol. 119:959–964.

    Article  PubMed  CAS  Google Scholar 

  • Corriu, C., Félétou, M., Canet, E., and Vanhoutte, P. M., 1996b, Inhibitors of the cytochrome P450- monooxygenase and endothelium-dependent hyperpolarisations in the guinea-pig isolated carotid artery, Br. J. Pharmacol. 117:607–610.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, C. L., and Cohen, R,A., 1991, Two mechanisms mediate relaxation by bradykinin of pig coronary artery: NO-dependent and independent responses, Am. J. Physiol. 261:H830–H835.

    PubMed  CAS  Google Scholar 

  • Darkow, D. J., Lu, L., and White, R. E., 1997, Estrogen relaxation of coronary artery smooth muscle is mediated by nitric oxide and cyclic-GMP, Am. J. Physiol. 41:H2765–H2773.

    Google Scholar 

  • Dart, C., and Standen, N. B., 1993, Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery, J. Physiol. (London) 471:767–786.

    CAS  Google Scholar 

  • Davies, P. F., Oleson, S. P., Clapham, D. E., Morel, E. M, and Schoen, F. J., 1988, Endothelial communication: State of the art lecture, Hypertension 11:563–572.

    Article  PubMed  CAS  Google Scholar 

  • Davis, K., Grinsburg, R., Bristow, M., and Harrison, D. C., 1980, Biphasic action of prostacyclin in the human coronary artery, Clin. Res. 28:165A.

    Google Scholar 

  • De Mey, J. G., Claeys, M., and Vanhoutte, P. M., 1982, Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery, J. Pharmacol. Exp. Ther. 222:166–173.

    PubMed  Google Scholar 

  • Deutsch, D. G., Goligorsky, M. S., Schmid, P. C., Krebsbach, R. J., Schmid, H. H. O., Das, S. K., Dey, S. K., Arreaza, G., Thorup, C., Stefano, G., and Moore, L. C, 1997, Production and physiological actions of anandamide in the vasculature of the rat kidney, J. Clin. Invest. 100:1538–1546.

    Article  PubMed  CAS  Google Scholar 

  • Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., and Mechoulam, R.,1992, Isolation and structure of a brain constituent that binds to the cannabinoid receptor, Science 258:1946–1949.

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo, V., Fontana, A., Cadas, H., Schinelli, S., Cimino, G., Schwartz, J. C, and Piomelli, D., 1994, Formation and inactivation of endogenous cannabinoid anandamide in central neurons, Nature 372:686–691.

    Article  PubMed  Google Scholar 

  • Eckman, D. M., Hopkins, N. O., and Keef, K. D., 1995, Effects of inhibitors of cytochrome P450 pathway on relaxation and hyperpolarisation induced with acetylcholine and lemakalim. Circulation 92:I–751.

    Google Scholar 

  • Eckman, D. M., Hopkins, N. O., McBride, C., and Keef, K. D., 1998, Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: Role of epoxyeicosatrienoic acid, Br. J. Pharmacol. 124:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, F. R., Hirst, G. D., and Silverberg, G. D., 1988, Inward rectification in rat cerebral arterioles, involvement of potassium ions in autoregulation, J. Physiol. (London) 404:455–466.

    CAS  Google Scholar 

  • Edwards, G., and Weston, A. H., 1995, Potassium channels in the regulation of vascular smooth muscle tone, in: Pharmacologicol Control of Calcium and Potassium Homeostasis: Biological, Therapeutical and Clinical Aspects (T. Godfraind, G. Mancia, M. P. Abbracchio, L. Aguilar-Bryan, and S. Govoni, eds.), Kluwer Academic Press, Dordrecht, The Netherlands, pp. 85–93.

    Chapter  Google Scholar 

  • Edwards, G., Zygmunt, P. M., Högestät, E. D., and Weston, A. H., 1996, Effects of cytochrome P450 inhibitors on potassium currents in mechanical activity in rat portal vein, Br. J. Pharmacol., 119:691–701.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, G., Dora, K. A., Gardener, M. J., Garland, C. J., and Weston, A. H., 1998, K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–272.

    Article  PubMed  CAS  Google Scholar 

  • Faraci, F. M., and Heistad, D. D., 1998, Regulation of the cerebral circulation: Role of endothelium and potassium channel, Physiol. Rev. 78:54–75.

    Google Scholar 

  • Félétou, M., and Vanhoutte, P. M., 1985, Endothelium-derived relaxing factor(s) hyperpolarize(s) coronary smooth muscle. Physiologist 48:325.

    Google Scholar 

  • Félétou, M., and Vanhoutte, P. M., 1988, Endothelium-dependent hyperpolarisation of canine coronary smooth muscle, Br. J. Pharmacol. 93:515–524.

    Article  PubMed  Google Scholar 

  • Félétou, M., and Vanhoutte, P. M., 1996a, Endothelium-derived hyperpolarizing factor, Clin. Exp. Pharmacol. Physiol. 23:1082–1090.

    Article  PubMed  Google Scholar 

  • Félétou M., and Vanhoutte, P. M., 1996b, Biossay of endothelium-derived hyperpolarizing factor in canine arteries, in: Endothelium-Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 25–32.

    Google Scholar 

  • Félétou, M., Hoeffner, U., and Vanhoutte, P. M., 1989, Endothelium-dependent relaxing factors do not affect the smooth muscle of portal-mesenteric vein. Blood Vessels 26:21–32.

    PubMed  Google Scholar 

  • Fukao, M., Hattori, Y., Kanno, M., Sakuma, I., and Kitabatake, A., 1997, Evidence against a role of cytochrome P450-derived arachidonic acid metabolites in endothelium-dependent hyperpolarisation by acetylcholine in rat isolated mesenteric artery, Br. J. Pharmacol., 120:439–446.

    Article  PubMed  CAS  Google Scholar 

  • Fukuta, H., Miwa, K., Hozumi, T., Yamamoto, Y., and Suzuki, H., 1996, Reduction by EDHF of the intracellular calcium concentration in vascular smooth muscle, in Endothelium-Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 143–153.

    Google Scholar 

  • Fulton, D, McGiff, J. C., and Quilley, J., 1992, Contribution of NO and cytochrome P450 to the vasodilator effect of bradykinin in the rat kidney, Br. J. Pharmacol. 107:722–725.

    Article  PubMed  CAS  Google Scholar 

  • Fulton, D., Mahboudi, K., Mcgiff, J. C., and Quilley, J., 1995, Cytochrome P450-dependent effects of bradykinin in the rat heart, Br. J. Pharmacol 114:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Fulton, D, McGiff, J. C., and Quilley, J., 1998, Pharmacological evaluation of an epoxide as the putative hyperpolarizing factor mediating the nitric oxide-independent vasodilator effect of bradykinin in the rat heart, J. Pharmacol. Exp. Ther. 287:497–503.

    PubMed  CAS  Google Scholar 

  • Furchgott, R. F., and Jonathiandan, D., 1991, Endothelium-dependent and -independent vasodilatation involving cyclic GMP: Relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28:52–61.

    PubMed  CAS  Google Scholar 

  • Furchgott, R. F., and Vanhoutte, P. M., 1989, Endothelium-derived relaxing and contracting factors, FASEB J. 3:2007–2018.

    PubMed  CAS  Google Scholar 

  • Furchgott, R. F., and Zawadzki, J. V., 1980, The obligatory role of the endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  • Ganz, P., Sandbrock, A. W., Landis, S. C., Leopold, J., Gimbrone, M. A., and Alexander, R. W., 1986, Vasoactive intestinal peptide: Vasodilatation and cyclic AMP generation. Am. J. Physiol. 250:H755– H760.

    PubMed  CAS  Google Scholar 

  • Garcia-Pascual, A., Labadia, A., Jimenez, E., and Costa, G., 1995, Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: Mediation by nitric oxide and changes in apamin-sensitive K + conductance, Br. J. Pharmacol. 115:1221–1230.

    Article  PubMed  CAS  Google Scholar 

  • Garland, C. J., and Plane, F., 1996, Relative importance of endothelium-derived hyperpolarizing factor for the relaxation of vascular smooth muscle in different arterial beds, in: Endothelium-Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 173–179.

    Google Scholar 

  • Gebremedhin, D., Ma, Y. H., Falck, J. R., Roman, R. J., VanRollins, M., and Harder, D. R., 1992, Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am. J. Physiol. 263:H519–H525.

    PubMed  CAS  Google Scholar 

  • Gebremedhin, D., Harder, D. R., Pratt, P. F., and Campbell, W. B., 1998, Bioassay of an endothelium-derived hyperpolarizing factor from bovine coronary arteries: Role of a cytochrome P450 metabolite, J. Vasc. Res. 35:274–284.

    Article  PubMed  CAS  Google Scholar 

  • Gidday, J. M., Maceren, R. G., Shah, A. R., Meier, J. A., and Zhu, Y., 1996, KATP channels mediate adenosine-induced hyperemia in retina, Invest. Ophthalmol Visual Sci. 37:2624–2633.

    CAS  Google Scholar 

  • Gordon, J. L., and Martin, W., 1983, Endothelium-dependent relaxation of the pig aorta: Relationship to stimulation of 86Rb efflux from endothelial cells, Br. J. Pharmacol. 79:531–541.

    Article  PubMed  CAS  Google Scholar 

  • Graier, W. F., Simecek, S., and Sturek, M., 1995b, Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells, J. Physiol. (London) 482:259–274.

    CAS  Google Scholar 

  • Graier, W. F., Holzmann, S., Hoebel, B. G., Kukovetz, W. R., and Kostner, G. M., 1996, Mechanisms of L-NG-nitroarginine/indomethacin-resistant relaxation in bovine and porcine coronary arteries, Br. J. Pharmacol. 119:1177–1186.

    Article  PubMed  CAS  Google Scholar 

  • Haeusler, G., and Thorens, 1976, The pharmacology of vaso-active antihypertensives, in: Vascular Neuroeffector Mechanisms (J. A. Bevan et al., eds.), Kargel, Basel, Switzerland, pp. 232–241.

    Google Scholar 

  • Harder, D. R., Campbell, W. B., Gebremedhin, D., and Pratt, P. F., 1996, Biossay of a cytochrome P450-dependent endothelial-derived hyperpolarizing factor from bovine coronary arteries, in: En- dothelium-Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 73–81.

    Google Scholar 

  • Hardy, P., Abran, D., Hou, X., Lahaie, I., Peri, K. G., Asselin, P., Varma, D. R., and Chemtob, S., 1998, A major role for prostacyclin in nitric oxide-induced ocular vasorelaxation in the piglet, Circ. Res. 83:721–729.

    Article  PubMed  CAS  Google Scholar 

  • Hashitani, H., and Suzuki, H., 1997, K+ channels which contribute to the acetylcholine-induced hyperpolarization in smooth muscle of the guinea-pig submucosal arterioles, J. Physiol. (London) 501:319–329.

    Article  CAS  Google Scholar 

  • Hasunuma, K., Yamaguchi, T., Rodman, D., O’Brien, R., and McMurtry, I., 1991, Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lungs, Am. J. Physiol. 260:L97–L104.

    PubMed  CAS  Google Scholar 

  • Hayabuchi, Y., Nakaya, Y., Matsukoa, S., and Kuroda, Y., 1998, Endothelium-derived hyperpolarizing factor activates Ca2+-activated K+ channels in porcine coronary artery smooth muscle cells, J. Cardiovasc. Pharmacol. 32:642–649.

    Article  PubMed  CAS  Google Scholar 

  • Hecker, M., Bara, A. T., Bauersachs, J., and Busse, R., 1994, Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals, J. Physiol. 481:407–414.

    PubMed  CAS  Google Scholar 

  • Heinzel, B., John, M., Klatt, P., Böhme, E., and Mayer, B., 1992, Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase, Biochem. J. 281:627–630.

    PubMed  CAS  Google Scholar 

  • Herlihy, J. T., Bockman, E. L., Berne, R. M., and Rubio, R., 1976, Adenosine relaxation of isolated vascular smooth muscle. Am. J. Physiol. 239:1239–1243.

    Google Scholar 

  • Hoang, L. M., and Mathers, D. A., 1998, Internally applied endotoxins and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway, Br. J. Pharmacol. 123:5–12.

    Article  PubMed  CAS  Google Scholar 

  • Hu. S., and Kim. H. S., 1993, Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid, Eur. J. Pharmacol. 230:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Illiano, S. C., Nagao, T., and Vanhoutte, P. M., 1992, Calmidazolium, a calmodulin inhibitor, inhibits endothelium-dependent relaxations resistant to nitro-L-arginine in the canine coronary artery, Br. J. Pharmacol. 107:387–392.

    Article  PubMed  CAS  Google Scholar 

  • Imai, S., and Takeda, K., 1967, Effects of vasodilators upon the isolated taenia coli of the guinea-pig, J. Pharmacol. Exp. Ther. 156:557–564.

    PubMed  CAS  Google Scholar 

  • Ito, Y., Suzuki, H., and Kuriyama, K., 1978, Effects of sodium nitroprusside on smooth muscle cells of rabbit pulmonary artery and portal vein, J. Pharmacol. Exp. Ther. 207:1022–1031.

    PubMed  CAS  Google Scholar 

  • Ito, Y., Kitamura, K., and Kuriyama, K., 1980a, Actions of nitroglycerin on the membrane and mechanical properties of smooth muscle cells of the coronary artery of the pig, Br. J. Pharmacol. 70:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Ito, Y., Kitamura, K., and Kuriyama, K., 1980b, Nitroglycerin and catecholamine actions on smooth muscle cells of the canine coronary artery, J. Physiol. (London) 309:171–183.

    CAS  Google Scholar 

  • Jackson, W. F., Konig, A., Dambacher, T., and Busse, R., 1993, Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels, Am. J. Physiol. 264:H238–H243.

    PubMed  CAS  Google Scholar 

  • Kauser, K., and Rubanyi, G. M., 1992, Bradykinin-induced nitro-L-arginine-insensitive endothelium-dependent relaxation of porcine coronary artery is not mediated by bioassayable substances, J. Cardiovasc. Pharmacol. 20:S101–S104.

    Article  PubMed  CAS  Google Scholar 

  • Kauser, K., Stekiel, W. J, Rubanyi, G. M, and Harder, D. R., 1989, Mechanism of action of EDRF on pressurized arteries:Effect on K+ conductance, Circ. Res. 65:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, J., Kobayashi, S., Miyagi, Y., Nishimura, J., Fujishima, M., and Kanaide, H., 1997, The mechanisms of the relaxation induced by vasoactive intestinal peptide in the porcine coronary artery, Br. J. Pharmacol. 121:977–985.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, P., Lischke, V., and Hecker, M., 1996, Etomidate and thiopental inhibit the release of endothelium- derived-hyperpolarizing factor in the human renal artery. Anesthesiology 84:1485–1488.

    Article  PubMed  CAS  Google Scholar 

  • Khan, S. A., Mathews, S. R., and Meisheri, K. D., 1993, Role of calcium-activated K+ channels in vasodilatation induced by nitroglycerin, acetylcholine and nitric oxide, J. Pharmacol Exp. Ther. 267:1327–1335.

    PubMed  CAS  Google Scholar 

  • Kitazono, T., Ibayashi, S., Nagao, T., Fujii, K., and Fujishima, M., 1997, Role of Ca2+-activated K+ channels in acetylcholine-induced dilatation of the basilar artery in vivo, Br. J. Pharmacol. 120:102–106.

    Article  PubMed  CAS  Google Scholar 

  • Kleppisch T., and Nelson, M. T., 1995, Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptor and c-AMP-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 92:12441– 12445.

    Article  PubMed  CAS  Google Scholar 

  • Knot, H. J., Zimmermann, P. A., and Nelson M. T.,1996, Extracellular potassium-induced hyperpolarization and dilatations of rat coronary and cerebral arteries involve inward rectifier potassium channels, J. Physiol. (London) 492:419–430.

    CAS  Google Scholar 

  • Komori, K., and Suzuki, H., 1987, Electrical responses of smooth muscle cells during cholinergic vasodilation in the rabbit saphenous artery, Circ. Res. 61:586–593.

    Article  PubMed  CAS  Google Scholar 

  • Komori, K., and Vanhoutte P. M., 1990, Endothelium-derived hyperpolarizing factor, Blood Vessels 27:238–245.

    PubMed  CAS  Google Scholar 

  • Komori, K., Lorenz, R. R., and Vanhoutte, P. M., 1988, Nitric oxide, ACh and electrical and mechanical properties of canine arterial smooth muscle, Am. J. Physiol. 255:H207–H212.

    PubMed  CAS  Google Scholar 

  • Krippeit-Drews, P., Haberland, C., Fingerle, J., Drews, G., and Lang, F., 1995, Effects of H2O2 on membrane potential and [Ca2+]i- of cultured rat arterial smooth muscle cells, Biochem. Biophys. Res. Commun. 209:139–145.

    Article  PubMed  CAS  Google Scholar 

  • Kühberger, E., Groschner, K., Kukovetz, W. R., and Brunner, F., 1994, The role of myoendothelial cell contact in non-nitric oxide-, non-prostanoid-mediated endothelium-dependent relaxation of porcine coronary artery, Br. J. Pharmacol. 113:1289–1294.

    Article  PubMed  Google Scholar 

  • Kuo, L., and Chancellor, J. D., 1995, Adenosine potentiates flow-induced dilation of coronary arterioles by activating KATP channels in endothelium, Am. J. Physiol. 38:H541–H549.

    Google Scholar 

  • Li, P. L., and Campbell, W. B., 1998, Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein, Circ. Res. 80:877–884.

    Article  Google Scholar 

  • Li, P. L., Zou, A. P., and Campbell, W. B., 1997, Regulation of potassium channels in coronary arterial smooth muscle by endothelium-derived vasodilators, Hypertension 29:262–267.

    Article  PubMed  Google Scholar 

  • Li, P. L., Jin, M. W., and Campbell, W. B., 1998, Effect of selective inhibition of soluble guanylate cyclase on the KCa channel activity in coronary smooth muscle, Hypertension 31:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Luu, T. N., Dashwood, M. R., Tadjkarimi, S., Chester, A. H., and Yacoub, M. H., 1997, ATP-sensitive potassium channels mediate vasodilatation by calcitonin gene related peptide in human internal mammary but not gastroepiploic arteries, Eur. J. Clin. Invest. 27:960–966.

    Article  PubMed  CAS  Google Scholar 

  • Makujina, S. R., Olanrewaju, H. A., and Mustafa, S. J., 1994, Evidence against KATP channel involvement in adenosine receptor-mediated dilation of epicardial vessels, Am. J. Physiol. 267:H716–H724.

    PubMed  CAS  Google Scholar 

  • Marchenko, S. M., and Sage, S. O., 1994, Smooth muscle cells affect endothelial membrane potential in rat aorta. Am. J. Physiol. 267:H804–H811.

    PubMed  CAS  Google Scholar 

  • McCarron, J. G., and Halpern, W., 1990, Potassium dilates rat cerebral arteries by two independent mechanisms, Am. J. Physiol. 259:H902–H908.

    PubMed  CAS  Google Scholar 

  • Milner, P., Kirkpatrick, K. A., Ralevic, V., Toothill, V., and Burnstock, G., 1990, Endothelial cells cultured from human umbilical vein release ATP and acetylcholine in response to increased flow, Proc. R. Soc. London B. 241:245–248.

    Article  CAS  Google Scholar 

  • Mistry, D. K., and Garland, C. J., 1998, Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery, Br. J. Pharmacol. 124:1131–1140.

    Article  PubMed  CAS  Google Scholar 

  • Miura, H., and Gutterman, D. D., 1998, Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P450 monooxygenase and Ca2+-activated K+ channels, Circ. Res. 83:501–507.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., and Nakaya, Y., 1994, Endotoxin-induced non endothelial nitric oxide activates the Ca2+- activated K+ channel in cultured vascular smooth muscle cells, J. Mol. Cell. Cardiol. 26:1487–1495.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., and Nakaya, Y., 1995, Calcitonin gene related peptide activates the K+ channels of vascular smooth muscle cells via adenylate cyclase, Basic Res. Cardiol. 90:332–336.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., Nakaya, Y., and Moritoki, H., 1994, Nonendothelial-derived nitric oxide activates the ATP-sensitive K channel of vascular smooth muscle cells, FEBS Lett. 345:47–49.

    Article  PubMed  CAS  Google Scholar 

  • Mombouli, J.-V., and Vanhoutte, P. M., 1997, Endothelium-derived hyperpolarizing factor(s): Updating the unknown, Trends Pharmacol. Sci. 18:252–256.

    Article  PubMed  CAS  Google Scholar 

  • Mombouli, J. V., Illiano, S., Nagao, T., and Vanhoutte, P. M., 1992, The potentiation of bradykinin-induced relaxations by perindoprilat in canine coronary arteries involves both nitric oxide and endothelium- derived hyperpolarizing factor, Circ. Res. 71:137–144.

    Article  PubMed  CAS  Google Scholar 

  • Mombouli, J.-V., Bissiriou, I., and Vanhoutte, P. M., 1996, Biossay of endothelium-derived hyperpolarizing factor: Is endothelium-derived depolarizing factor a confounding element?, in: Endothelium-Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 51–57.

    Google Scholar 

  • Moncada, S., and Vane, J. R., 1979, Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin, Pharmacol. Rev. 30:293–331.

    Google Scholar 

  • Moncada, S., Gryglewski, R. J., Bunting, S., and Vane, J. R., 1976, An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature 263:663–665.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Herman, A. G., Higgs, E. A., and Vane, J. R., 1977, Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the antithrombotic properties of vascular endothelium, Thromb. Res. 11:323–344.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R. J. M., and Higgs, E. A., 1991, Nitric oxide: Physiology, pathophysiology, and pharmacology, Pharmacol Rev. 43:109–142.

    PubMed  CAS  Google Scholar 

  • Mügge, A., Lopez, J. A. G., Piegors, D. J., Breese, K. R., and Heistad, D. D., 1991, Acetylcholine-induced vasodilatation in rabbit hindlimb in vivo is not inhibited by analogues of L-arginine, Am. J. Physiol. 260:H242–H247.

    PubMed  Google Scholar 

  • Murphy, M. E., and Brayden, J. E., 1995a, Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries, J. Physiol. 489:723–734.

    PubMed  CAS  Google Scholar 

  • Murphy, M. E., and Brayden, J. E., 1995b, Nitric oxide hyperpolarisation of rabbit mesenteric arteries via ATP-sensitive potassium channels, J. Physiol. 486:47–58.

    PubMed  CAS  Google Scholar 

  • Mutafova-Yambolieva, V. N., and Keef, K. D., 1997, Adenosine-induced hyperpolarization in guinea-pig coronary artery involves A2B receptors and KATP channels, Am. J. Physiol. 42:H2687–H2695.

    Google Scholar 

  • Nagao, T., and Vanhoutte, P. M., 1992a, Characterization of endothelium-dependent relaxations resistant to nitro-L-arginine in the porcine coronary artery, Br. J. Pharmacol. 107:1102–1107.

    Article  PubMed  CAS  Google Scholar 

  • Nagao, T., and Vanhoutte, P. M., 1992b, Hyperpolarisation as a mechanism for endothelium-dependent relaxations in the porcine coronary artery, J. Physiol. 445:355–367.

    PubMed  CAS  Google Scholar 

  • Nagao, T., Illiano, S. C., and Vanhoutte, P. M., 1992a, Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-L-arginine in rats, Am. J. Physiol. 263:H1090–H1094.

    PubMed  CAS  Google Scholar 

  • Nagao, T., Illiano, S. C., and Vanhoutte, P. M., 1992b, Calmodulin antagonists inhibit endothelium-dependent hyperpolarisation in the canine coronary artery, Br. J. Pharmacol. 107:382–386.

    Article  PubMed  CAS  Google Scholar 

  • Najibi, S., and Cohen, R. A., 1995, Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO, Am. J. Physiol. 38:H805–H811.

    Google Scholar 

  • Nakashima, M., and Vanhoutte, P. M., 1995, Isoproterenol causes hyperpolarization through opening of ATP-sensitive potassium channels in vascular smooth muscle of the canine saphenous vein, J. Pharmacol. Exp. Ther. 272:379–384.

    PubMed  CAS  Google Scholar 

  • Nakashima, M., Mombouli, J.-V., Taylor, A. A., and Vanhoutte, P. M., 1993, Endothelium-dependent hyperpolarisation caused by bradykinin in human coronary arteries, J. Clin. Invest. 92:2867–2871.

    Article  PubMed  CAS  Google Scholar 

  • Nazario, B., Hu, R. M., Pedram, A., Prins, B., and Levin, E. R., 1995, Atrial and brain natriuretic peptides stimulate the production and secretion of C-type natriuretic peptide from bovine aortic endothelial cells, J. Clin. Invest. 95:1151–1157.

    Article  PubMed  CAS  Google Scholar 

  • Needleman, P., Jakshik, B., and Johnson, E. M., 1973, Sulfhydryl requirement for relaxation of vascular smooth muscle, J. Pharmacol. Exp. Ther. 187:324–331.

    PubMed  CAS  Google Scholar 

  • Nees, S., Gerbes, A. L., Willershausen-Zonnchen, B., and Gerlach, E., 1980, Purine metabolism in cultured coronary endothelial cells, Adv. Exp. Med. Biol. 122:25–30.

    Article  Google Scholar 

  • Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol. 268:C799–C822.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Huang, Y., Brayden, J. E., Hescheler, J., and Standen, N. B., 1990, Arterial dilations in response to calcitonin gene related peptide involve activation of K+ channels, Nature, 344:770–773.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, M., Hashitani, H., Fukuta, H., Yamamoto, Y., and Suzuki, H., 1998, Potassium channels activated in the endothelium-dependent hyperpolarization in guinea-pig coronary artery, J. Physiol. (London) 510:455–465.

    Article  CAS  Google Scholar 

  • Node, K., Kitazake, M., Kosaka, H., Minamino, T., Sato, H., Kuzuya, T., and Hori, M., 1997, Roles of NO and Ca2+-activated K+ channels in coronary vasodilatation induced by 17-beta-estradiol in ischemic heart failure, FASEB J. 11:793–799.

    PubMed  CAS  Google Scholar 

  • Nossaman, B. D., Kaye, A. D., Feng, C. J., and Kadowitz, P. J., 1997, Effects of charybdotoxin on responses to nitrovasodilators and hypoxia in the rat lung, Am. J. Physiol. 16:L787–L791.

    Google Scholar 

  • Ohlmann, P., Martinez, M. C., Schneider, F., Stoclet, J. C., and Andriantsitohaina, R., 1997, Characterization of endothelium-derived relaxaing factors released by bradykinin in human resistance arteries, Br. J. Pharmacol. 121:657–664.

    Article  PubMed  CAS  Google Scholar 

  • Olanrewaju, H. A., Hargittai, P. T., Lieberman, E. A., and Mustafa, S. J., 1995, Role of endothelium in hyperpolarisation of coronary smooth muscle by adenosine and its analogues, J. Cardiovasc. Pharmacol. 25:234–239.

    Article  PubMed  CAS  Google Scholar 

  • Olanrewaju, H. A, Hargittai, P. T, Lieberman, E. M., and Mustafa, S. J., 1997, Effect of ouabain on adenosine receptor-mediated hyperpolarization in porcine coronary artery smooth muscle, Eur. J. Pharmacol. 322:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Oltman, C. L., Weintraub, N. L., VanRollins, M., and Dellsperger, K. C., 1998, Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation, Circ. Res. 83:932–939.

    Article  PubMed  CAS  Google Scholar 

  • Onoue, H., and Katuzic, Z. S., 1997, Role of potassium channels in relaxations of canine middle cerebral arteries induced by nitric oxide donors, Stroke 28:1264–1270.

    Article  PubMed  CAS  Google Scholar 

  • Ozaka, T., Doi, Y., Kayashima, K., and Fujimoto, S., 1997, Weibel-Palade bodies as a storage site of calcitonin gene related peptide and endothelin-1 in blood vessels of the rat carotid body, Anat. Rec. 247:388–394.

    Article  PubMed  CAS  Google Scholar 

  • Pacicca, C., von der Weid, P., and Beny, J. L. 1992. Effect of nitro-L-arginine on endothelium-dependent hyperpolarisations and relaxations of pig coronary arteries, J. Physiol. 457:247–256.

    PubMed  CAS  Google Scholar 

  • Palmer, R. M. J., Ferridge, A. G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R. M. J., Ashton, D. S., and Moncada, S., 1988, Vascular endothelial cells synthesize nitric oxide from L-arginine, Nature 333:664–666.

    Article  PubMed  CAS  Google Scholar 

  • Parkington, H. C., Tare, M., Tonta, M. A., and Coleman, H. A., 1993, Stretch revealed three components in the hyperpolarisation of guinea-pig coronary artery in response to acetylcholine, J. Physiol 465:459–476.

    PubMed  CAS  Google Scholar 

  • Parkington, H. C., Tonta, M., Coleman, H., and Tare, M., 1995, Role of membrane potential in endothelium-dependent relaxation of guinea-pig coronary arterial smooth muscle, J. Physiol. 484:469–480.

    PubMed  CAS  Google Scholar 

  • Parkington, H. C, Tare, M., and Hammarstrm, A. K. M., 1996, The role of endothelium-derived prostacyclin in regulating tone in vascular smooth muscle, in: Endothelium-Derived Hyperpolarizing Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 57–64.

    Google Scholar 

  • Pascoal, I. F., and Umans, J. G., 1996, Effect of pregnancy on mechanisms of relaxation in human omental microvessels, Hypertension 28:183–187.

    Article  PubMed  CAS  Google Scholar 

  • Pataricza, J., Toth, G. K., Penke, B., Hohn, J., and Papp, J. G., 1995, Effect of selective inhibition of potassium channels on vasorelaxing response to cromakalim, nitroglycerin and nitric oxide of canine coronary arteries, J. Pharm. Pharmacol. 47:921–925.

    Article  PubMed  CAS  Google Scholar 

  • Peng, W., Hoidal, J. R., and Farrukh, I. S., 1996, Regulation of Ca2+-activated K+ channels in pulmonary vascular smooth muscle cells — role of nitric oxide, J. Appl. Physiol. 81:1264–1272.

    PubMed  CAS  Google Scholar 

  • Petersson, J., Zygmunt, P. M., Brandt, L., and Högestatt, E. D., 1995, Substance P-induced relaxation and hyperpolarisation in human cerebral arteries, Br. J. Pharmacol. 115:889–894.

    Article  PubMed  CAS  Google Scholar 

  • Petersson, J., Zygmunt, P. M., and Högestätt, E. D., 1997, Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries, Br. J. Pharmacol. 120:1344–1350.

    Article  PubMed  CAS  Google Scholar 

  • Pfister, S. L., Spitzbarth, N., Nithipatikom, K., Edgemond, W. S., and Campbell W. B., 1999, Endothelium-derived eicosanoids from lipoxygenase relax the rabbit aorta by opening potassium channels, in: Endothelium-Dependent Hyperpolarizations Vol. 2 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, 1999, pp. 17–28.

    Google Scholar 

  • Plane, F., and Garland, C. J., 1994, Smooth muscle hyperpolarization and relaxation to acetylcholine in the rabbit basilar artery, J. Autonom. Nerv. Syst. 49:S15–S18.

    Article  CAS  Google Scholar 

  • Plane, F., Pearson, T., and Garland, C. J., 1995, Multiple pathways underlying endothelium-dependent relaxation in the rabbit in isolated femoral artery, Br. J. Pharmacol. 115:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Plane, F. Hurrell, A. Jeremy, J. Y., and Garland, C. J., 1996, Evidence that potassium channels make a major contribution to SIN-1-evoked relaxation of rat isolated mesenteric artery, Br. J. Pharmacol. 119:1557– 1562.

    Article  PubMed  CAS  Google Scholar 

  • Plane, F., Holland, M., Waldron, G. J., Garland, C. J., and Boyle, J. P., 1997, Evidence that anandamide and EDHF act via different mechanisms in the rat isolated mesenteric arteries, Br. J. Pharmacol. 121: 1509–1511.

    Article  PubMed  CAS  Google Scholar 

  • Plane, F., Wiley, K. E., Jeremy, J. Y., Cohen, R. A., and Garland, C. J., 1998, Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Br. J. Pharmacol. 123:1351–1358.

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz, K., Sinterose, A., and Ramwell, P., 1978, The effect of prostacyclin on the human umbilical artery, Prostaglandins 15:1035–1044.

    Article  PubMed  CAS  Google Scholar 

  • Popp, R., Bauersachs, J., Sauer, E., Hecker, M., Fleming, I., and Busse, R., 1996, A transferable, β- naphthoflavone-inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells, J. Physiol (London) 497:699–709.

    CAS  Google Scholar 

  • Prasad, K., and Bharadwaj, L. A., 1996, Hydroxyl radical — a mediator of acetylcholine induced vascular relaxation, J. Mol. Cell. Cardiol. 28:2033–2041.

    Article  PubMed  CAS  Google Scholar 

  • Pratt, P. F., Edgemont, W. S., Hillard, C. J., and Campbell, W. B., 1998, N-Arachidonylethanolamide relaxation of bovine coronary arteries is not mediated by CB1 cannabinoid receptor, Am. J. Physiol. 274:H375–H381.

    PubMed  CAS  Google Scholar 

  • Price, J. M., and Hellermann, A., 1997, Inhibition of cyclic-GMP mediated relaxation in small rat coronary arteries by block of Ca++-activated K+ channels, Life Sci. 61:1185–1192.

    Article  PubMed  CAS  Google Scholar 

  • Prior, H. M., Webster, N., Quinn, K., Beech, D. J., and Yates, M. S.,1998, K+-induced dilation of a small renal artery: No role for inward rectifier K+ channels, Cardiovasc. Res. 37:780–790.

    Article  PubMed  CAS  Google Scholar 

  • Quignard, J.-F., Chataigneau, T., Corriu, C., Duhault, J., Félétou, M., and Vanhoutte, P. M, 1999a, Effects of SIN-1 on potassium channels of vascular smooth muscle cells of the rabbit aorta and guinea-pig carotid artery, in: Endothelium-Dependent Hyperpolarizations Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 193–200.

    Google Scholar 

  • Quignard, J.-F., Félétou, M., Thollon, C., Vilaine, J. P., Duhault, J., and Vanhoutte, P. M, 1999b, Potassium ions and endothelium-derived hyperpolarizing factors in guinea-pig carotid and porcine coronary arteries. Br. J. Pharmacol. 127:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Quignard, J.-F., Chataigneau, T., Corriu, C., Duhault, J., Félétou, M., and Vanhoutte, P. M, 1999c, Potassium channels involved in EDHF-induced hyperpolarization of the smooth muscle cells of the isolated guinea-pig carotid artery, in: Endothelium-Derived Hyperpolarization Factor (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 201–208.

    Google Scholar 

  • Quilley, J., Fulton, D., and McGiff, J. C., 1997, Hyperpolarizing factors, Biochem. Pharmacol. 54:1059–1070.

    Article  PubMed  CAS  Google Scholar 

  • Randall, M. D., and Kendall, D. A., 1997, Involvement of a cannabinoid in endothelium-derived hyper-Qpolarizing factor-mediated coronary vasorelaxation, Eur. J. Pharmacol. 335:205–209.

    Article  PubMed  CAS  Google Scholar 

  • Randall, M. D., and Kendall, D. A., 1998, Anandamide and endothelium-derived hyperpolarizing factor act via a common vasorelaxant mechanism in rat mesentery. Eur. J. Pharmacol. 346:51–53.

    Article  PubMed  CAS  Google Scholar 

  • Randall, M. D., Alexander, S. P. H., Bennett, T., Boyd, E. A., Fry, J. R., Gardiner, S. M., Kemp, P. A., Mcculloch, A. I., and Kendall, D. A., 1996, An endogenous cannabinoid as an endothelium-derived vasorelaxant, Biochem. Biophys. Res. Commun. 229:114–120.

    Article  PubMed  CAS  Google Scholar 

  • Randall, M. D., Mcculloch, A. I., and Kendall, D. A., 1997, Comparative pharmacology of endothelium-derived hyperpolarizing factor and anandamide in rat isolated mesentery, Eur. J. Pharmacol. 333:191–197.

    Article  PubMed  CAS  Google Scholar 

  • Rapacon, M., Mieyal, P., McGiff, J. C., Fulton, D., and Quilley, J., 1996, Contribution of calcium-activated potassium channels to the vasodilator effect of bradykinin in the isolated, perfused kidney of the rat, Br. J. Pharmacol. 118:1504–1508.

    Article  PubMed  CAS  Google Scholar 

  • Rees, D. D., Palmer, R. M. J., Hodson, H. F., and Moncada, S., 1989, A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation, Br. J. Pharmacol. 96:418–424.

    Article  PubMed  CAS  Google Scholar 

  • Richard, V., Tanner, F. C., Tschudi, M. R., and Lüscher, T. F., 1990, Different activation of L-arginine pathway by bradykinin, serotonin, and clonidine in coronary arteries. Am. J. Physiol 259:H1433–H1439.

    PubMed  CAS  Google Scholar 

  • Robertson, B. E., Schubert, R., Hescheler, J., and Nelson, M. T., 1993, cyclic-GMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am. J. Physiol. 265:C299–C303.

    PubMed  CAS  Google Scholar 

  • Rosenblum, W. I., 1987, Hyodoxyl radical mediates the endothelium-dependent relaxation produced by bradykinin in mouse cerebral arterioles, Circ. Res. 61:601–603.

    Article  PubMed  CAS  Google Scholar 

  • Rosolowski, M., and Campbell, W. B., 1993, Role of PGI2 and EETs in the relaxation of bovine coronary arteries to arachidonic acid, Am. J. Physiol. 264:H327–H335.

    Google Scholar 

  • Rosolowski, M., and Campbell, W. B., 1996, Synthesis of hydroxyeicosatetraenoic (HETEs) and epoxy-eicosatrienoic acids (EETs) by cultured bovine coronary endothelial cells, Biochim. Biophys. Acta 1299:267–277.

    Article  Google Scholar 

  • Rubanyi, G.,M., and Vanhoutte, P. M., 1986, Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle, Am. J. Physiol 250:H815–H821.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., and Vanhoutte, P. M., 1987, Nature of endothelium-derived relaxing factor: Are there two relaxing mediators?, Circ. Res. 61:II61–II67.

    PubMed  CAS  Google Scholar 

  • Ruiz, E., and Tejerina, T., 1998, Relaxant effects of L-citrulline in rabbit vascular smooth muscle, Br. J. Pharmacol. 125:186–192.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, R., Serebryakov, N. V., Engel, H., and Hopp, H. H., 1996, Iloprost activates KCa channels of vascular smooth muscle cells: Role of cyclic-AMP-dependent proteine kinase, Am. J. Physiol. 271:C1203–C1211.

    PubMed  CAS  Google Scholar 

  • Schubert, R., Serebryakov, N. V., Mewes, H., and Hopp, H. H., 1997, Iloprost dilates rat small arteries: Role of KATP and KCa channel activation by cyclic-AMP-dependent protein kinase, Am. J. Physiol. 272:H1147–H1156.

    PubMed  CAS  Google Scholar 

  • Sedaa, K. O., Bjur, R. A., Shinozuka, K., and Westfall, D. P., 1990, Nerve and drugs-induced release of adenine nucleosides and nucleotides from rabbit aorta, J. Pharmacol. Exp. Ther. 252:1060–1067.

    PubMed  CAS  Google Scholar 

  • Sheridan, B. C., Mclntyre, R. C., Meldrum, D. R., and Fullerton, D. A., 1997, KATP channels contribute to beta and adenosine receptor-mediated pulmonary vasorelaxation, Am. J. Physiol. 17:L950–L956.

    Google Scholar 

  • Shimizu, S., and Paul, R. J., 1998, The endothelium-dependent, substance P relaxation of porcine coronary arteries resistant to nitric oxide synthesis inhibition is partially mediated by 4-aminopyridine-sensitive voltage-dependent K+ channels. Endothelium 5:287–295.

    Article  Google Scholar 

  • Shimokawa, H., Flavahan, N. A., Lorenz, R. R., and Vanhoutte, P. M., 1988, Prostacyclin releases endothelium-derived relaxing factor and potentiates its action in coronary arteries of the pig, Br. J. Pharmacol. 95:1197–1203.

    Article  PubMed  CAS  Google Scholar 

  • Shin, J. H., Chung, S., Park, E. J., Uhm, D. Y., and Suh, C. K., 1997, Nitric oxide directly activates calcium-activated potassium channels from rat brain reconstituted into planar lipid bilayer, FEBS Lett. 415:299–302.

    Article  PubMed  CAS  Google Scholar 

  • Shinozuka, K., Hashimoto, M., Bjur, R. A., Westfall, W. P., and Hattori, K., 1994, In vitro studies of release of adenine nucleotides and adenosine from rat vascular endothelium in response to α1-adrenoceptor stimulation, Br. J. Pharmacol. 113:1203–1208.

    Article  PubMed  CAS  Google Scholar 

  • Shryock, J. C., Rubio, R., and Berne, R. M., 1988, Release of adenosine from pig aortic endothelial cells during hypoxia and metabolic inhibition, Am. J. Physiol. 254:H223–H229.

    PubMed  CAS  Google Scholar 

  • Siegel, G., Stock, G., Schnalke, F., and Litza, B., 1987, Electrical and mechanical effects of prostacyclin in canine carotid artery, in: Prostacyclin and Its Stable Analogue Iloprost (R. J. Gryglewski and G. Stock, eds.), Springer-Verlag, Berlin, pp. 143–149.

    Chapter  Google Scholar 

  • Siegel, G., Mironneau, J., Schnalke, F., Schroder, G., Schulz, B. G., and Grote, J., 1990, Vasodilatation evoked by K+ channel opening, Prog. Clin. Biol. Res. 327:229–306.

    Google Scholar 

  • Siegel, G., Emden, J., Wenzel, K., Mironneau, J., and Stock G., 1992, Potassium channel activation and vascular smooth muscle, Adv. Exp. Med. Biol. 311:53–72.

    Article  PubMed  CAS  Google Scholar 

  • Simonsen, U., Garcia-Sacristan A., and Prieto, D., 1997, Apamin-sensitive K+ channels involved in the inhibition of acetylcholine-induced contractions in lamb coronary small arteries, Eur. J. Pharmacol. 329:153–163.

    PubMed  CAS  Google Scholar 

  • Smits, P., Williams, S. B., Lipson, D. E., Banitt, P., Ronge, G. A., and Creager, M. A., 1995, Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans, Circulation 92:2135–2141.

    Article  PubMed  CAS  Google Scholar 

  • Standen, N. B., Quayle, J. M., Davies, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T., 1989, Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle, Science 245:177–180.

    Article  PubMed  CAS  Google Scholar 

  • Sundquist, T., 1991, Bovine aortic endothelial cells release hydrogen peroxide, J. Cell. Physiol. 148:152–156.

    Article  Google Scholar 

  • Suzuki, H., Chen, G., Yamamoto, Y., and Miwa, K., 1992, Nitroarginine-sensitive and insensitive components of the endothelium-dependent relaxation in the guinea-pig carotid artery, Jpn. J. Physiol. 42:335–347.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, H., Heistad, D. D., Chu, Y., Rios, C. D., Ooboshi, H., and Faraci, F. M., 1996, Vascular expression of inducible nitric oxide synthase isoform associated with activation of Ca++-dependent K+ channels, J. Pharmacol. Exp. Ther. 279:1514–1519.

    PubMed  CAS  Google Scholar 

  • Taniguchi, J., Furukawa, K. I., and Shigekawa, M., 1993, Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells, Pflügers Arch. Eur. J. Physiol. 423:167–172.

    Article  CAS  Google Scholar 

  • Tare, M., Parkington, H. C., Coleman, H. A., Neild, T. O., and Dusting, G. J., 1990, Hyperpolarisation and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium, Nature 346:69–71.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, H. J., Chaytor, A. T., Evans, W. H., and Griffith, T. M., 1998, Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18β-glycyrrhetinic acid, Br. J. Pharmacol. 125:1–3.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. G., Southerton, J. S., Weston, A. H., and Baker, J. R. J., 1988, Endothelium-dependent effects of acetylcholine in rat aorta: A comparison with sodium nitroprusside and cromakalim, Br. J. Pharmacol. 94:853–863.

    Article  PubMed  CAS  Google Scholar 

  • Urakami-Harasawa, L., Shimokawa, H., Nakashima, M., Egashira, K., and Takeshita, A., 1997, Importance of endothelium-derived hyperpolarizing factor in human arteries, J. Clin. Invest. 100:2793–2799.

    Article  PubMed  CAS  Google Scholar 

  • Van de Voorde, J., Vanheel, B., and Leusen, I., 1992, Endothelium-dependent relaxation and hyperpolarisation in aorta from control and renal hypertensive rats, Circ. Res. 70:1–8.

    Article  PubMed  Google Scholar 

  • Vanhoutte, P. M., 1998, An old-timer makes a come-back, Nature 396:213–216.

    Article  PubMed  CAS  Google Scholar 

  • Vanhoutte, P. M., and Félétou, M., 1996, Conclusion: Existence of multiple EDHF(s)?, in: Endothelium- Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte ed.), Harwood Academic Publishers, Amsterdam, pp. 303–307.

    Google Scholar 

  • von der Weid, P.-Y., 1998, ATP-sensitive K+ channels in smooth muscle cells of guinea-pig lymphatics: Role in nitric oxide and β-adrenoceptor agonist-induced hyperpolarizations, Br. J. Pharmacol. 125:17–22.

    Article  PubMed  Google Scholar 

  • Wallerstedt, S. M., and Bodelsson, M., 1997, Endothelium-dependent relaxations by substance P in human isolated omental arteries and veins: Relative contribution of prostanoids, nitric oxide and hyperpolarisation,Br. J. Pharmacol. 120:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., 1998, Resurgence of carbon monoxide: An endogenous gaseous vasorelaxing factor, Can. J. Physiol. Pharmacol. 76:1–15.

    Article  PubMed  Google Scholar 

  • Wang, R., and Wu, L. Y., 1997, The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells, J. Biol Chem. 272:8222–8226.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., Wang, Z. Z., and Wu, L. Y., 1997a, Carbon-monoxide-induced vasorelaxation and the underlying mechanisms. Br. J. Pharmacol. 121:927–934.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., Wu, L. Y., and Wang, Z. Z., 1997b, The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells, Pflügers Arch. Eur. J. Physiol. 434:285–291.

    Article  CAS  Google Scholar 

  • Wei, C. M., Hu, S., Miller, V. M., and Burnett, J. C., 1994, Vascular actions of C-type natriuretic peptide in isolated porcine coronary arteries and coronary vascular smooth muscle cells, Biochem. Biophys. Res. Commun. 205:765–771.

    Article  PubMed  CAS  Google Scholar 

  • Weidelt, T., Boldt, W., and Markwardt, F. 1997, Acetylcholine-induced K+ currents in smooth muscle of intact rat small arteries, J. Physiol. (London) 500:617–630.

    CAS  Google Scholar 

  • Weintraub, N. L., Stephenson, A. L., Sprague, R. S., and Lonigro, A. J., 1999, Role of phospholipase A2 in EDHF-mediated relaxation of the porcine coronary artery, in: Endothelium-Dependent Hyperpolarizations,Vol. 2 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 97–108.

    Google Scholar 

  • Wellman, G. C., Bonev, A. D., Nelson, M. T., and Brayden, J. E., 1996, Gender differences in coronary artery diameter involve estrogen, nitric oxide and Ca2+-dependent K+ channels, Circ. Res. 79:1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Wellman, G. C., Quayle, J. M., and Standen, N. B., 1998, ATP-sensitive K+ channel activation by calcitonin gene related peptide and protein kinase A in pig coronary arterial smooth muscle, J. Physiol (London) 507:117–129.

    Article  CAS  Google Scholar 

  • White, R., and Hiley, C. R., 1997, A comparison of EDHF-mediated responses and anandamide-induced relaxations in the rat isolated mesenteric artery, Br. J. Pharmacol. 122:1573–1584.

    Article  PubMed  CAS  Google Scholar 

  • White, R., and Hiley, C. R., 1998, The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery, Br. J. Pharmacol. 125:533–541.

    Article  PubMed  CAS  Google Scholar 

  • Wise, H., and Jones, R. L., 1996, Focus on prostacyclin and its novel mimetics, Trends Pharmacol. Sci. 17:17–21.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, Y., Fukuta, H., Nakahira, Y., and Suzuki, H., 1998, Blockade by 18β-glycyrrhetinic acid of intercellular electrical coupling in guinea-pig arterioles. J. Physiol (London) 511:501–508.

    Article  CAS  Google Scholar 

  • Yamanaka, A., Ishikawa, K., and Goto, K., 1998, Characterization of endothelium-dependent relaxation independent of NO and prostaglandins in guinea-pig coronary artery, J. Pharmacol. Exp. Ther. 285:480–489.

    PubMed  CAS  Google Scholar 

  • Zanzinger, J., Czachurski, J., and Seller, H., 1996, Role of calcium-dependent K+ channels in the regulation of arterial and venous tone by nitric oxide in pigs, Pflügers Arch. Eur. J. Physiol. 432:671–677.

    Article  CAS  Google Scholar 

  • Zhang, H., Stockbridge, N., Weir, B., Krueger, C., and Cook, D., 1991, Glibenclamide relaxes vascular smooth muscle constriction produced by prostaglandin F, Eur. J. Pharmacol 195:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y. J., and Wang, J., 1996, Pulmonary vasoconstriction effects of prostacyclin in rats: Potential role of thromboxane receptors, J. Appl. Physiol. 81:2595–2603.

    PubMed  CAS  Google Scholar 

  • Zhao, Y. J., Wang, J., Rubin, L. J., and Yuan, X. J., 1997, Inhibition of Kv and KCa channels antagonizes NO-induced relaxation in pulmonary artery, Am. J. Physiol. 41:H904–H912.

    Google Scholar 

  • Zou, A. P., Fleming, J. T., Falck, J. R., Jacobs, E. R., Gebremedhin, D., Harder, D. R., and Roman, R. J., 1996, 20-Hydroxyeicosatetraenoic acid is an endogenous inhibitor of the large conductance Ca++- activated K+ channel in renal arterioles, Am. J. Physiol. 270:R228–R237.

    PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., and Högestätt, E. D., 1996, Endothelium-dependent hyperpolarization and relaxation in the hepatic artery of the rat, in: Endothelium-Derived Hyperpolarizing Factor, Vol. 1 (P. M. Vanhoutte, ed.), Harwood Academic Publishers, Amsterdam, pp. 191–202.

    Google Scholar 

  • Zygmunt, P. M., Grundsmar, L., and Högestätt, E. D., 1994a. Endothelium-dependent relaxation resistant to Nω-nitro-L-arginins in the rat hepatic artery and aorta, Acta Physiol. Scand. 152:107–114.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., Högestätt, E. D., and Grundemar, L., 1994b, Light-dependent effects of zinc protoporphyrin IX on endothelium-dependent relaxation resistant to Nω-nitro-L-arginine, Acta Physiol. Scand. 152:137– 143.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., Edwards, G., Weston; A. H., Davis, S. C., and Högestätt, E. D., 1996, Effects of cytochrome P450 inhibitors on EDHF-mediated relaxation in the rat hepatic artery, Br. J. Pharmacol 118:1147– 1152.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., Edwards, G., Weston, A. H., Larsson, B., and Högestätt, E. D., 1997a, Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery. Br. J. Pharmacol 121:141–149.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., Högestätt, E. D., Waldeck, K., Edwards, G., Kirkup A. J., and Weston, A. H., 1997b, Studies on the effects of anmdamide in rat hepatic artery, Br. J. Pharmacol. 122:1679–1686.

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt, P. M., Plane F., Paulsson, M., Garland, C. J., and Högestätt, E. D., 1998, Interactions between endothelium-derived relaxing factors in the rat hepatic artery: Focus on regulation of EDHF, Br. J. Pharmacol 124:992–1000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Félétou, M., Vanhoutte, P.M. (2001). Activation of Vascular Smooth Muscle K+Channels by Endothelium-Derived Factors. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics