Skip to main content

Single-Channel Properties of Ca2+ -Activated K+Channels in the Vascular Endothelium

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

The vascular endothelium performs a number of its functions through the release of several physiologically active mediators (Furchgott and Vanhoutte, 1989). These include nitric oxide (NO) and prostaglandin I2 (PGI2), which are involved in the regulation of vascular tone and the inhibition of platelet activity. The generation and release of both of these mediators is influenced by the cytosolic calcium concentration ([Ca2+] i ) in the endothelial cells (Moncada et al., 1991; Hallam et al., 1988). Thus, endothelium-dependent vasodilators act, at least in part, through the modulation of endothelial [Ca2+] i . The [Ca2+] i - also influences endothelial barrier properties (Rotrosen and Gallin, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baron, A., Frieden, M., Chabaud, F., and Bény, J.-L., 1996, Ca2+-dependent nonselective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells, J. Physiol (London) 49:699–706.

    Google Scholar 

  • Barrett, J. N., Magelby, K. L., and Pallotta, B. S., 1982, Properties of single calcium-activated potassium channels in cultured rat muscle, J. Physiol. (London) 331:211–230.

    CAS  Google Scholar 

  • Blatz, A. L., and Magelby, K. L., 1986, Single apamin-blocked Ca2+-activated K+ channels in cultured rat muscle, Nature 323:718–720.

    Article  PubMed  CAS  Google Scholar 

  • Bossu, J. L., Elhamdani, A., and Feltz, A., 1989, Voltage-dependent calcium entry in confluent bovine capillary endothelial cells, FEBS Lett 299:239–242.

    Article  Google Scholar 

  • Bregestovski, P., Bakhramov, A., Danilov, S., Moldobaeva, A., and Takeda, K., 1988, Histamine-induced inward currents in cultured endothelial cells from human umbilical vein, Br. J. Pharmacol. 95:429–436.

    Article  PubMed  CAS  Google Scholar 

  • Busse, R., Fichtner, H., Lückhoff, A., and Kohlhardt, M., 1988, Hyperpolarisation and increased free calcium in acetylcholine-stimulated endothelial cells, Am. J. Physiol. 255:H965-H969.

    Google Scholar 

  • Cai, S., Garneau, L., and Sauvé, R., 1998, Single-channel characterisation of the pharmacological properties of the K(Ca2+) channel of intermediate conductance in bovine aortic endothelial cells, J. Membr. Biol. 163:147–158.

    Article  PubMed  CAS  Google Scholar 

  • Cannell, M. B., and Sage, S. O., 1989, Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells, J. Physiol. (London) 419:555–568.

    CAS  Google Scholar 

  • Castle, N. A., Haylett, D. G., and Jenkinson, D. H., 1989, Toxins in the characterisation of potassium channels, Trends Neurosci 12:59–65.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., and Cheung, D. W., 1992, Characterisation of acetylcholine-induced membrane hyperpolarization in endothelial cells, Circ. Res. 70:257–263.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Suzuki, H., and Weston, A. H., 1988, Acetylcholine releases endothelium-derived hyperpolarising factor and EDRF from rat blood vessels, Br. J. Pharmacol. 95:1165–1174.

    Article  PubMed  CAS  Google Scholar 

  • Colden-Stanfield, M., Schilling, W. P., Ritchie, A. K., Eskin, S. G., Navarro, L. T., and Kunze, D.L., 1987, Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells, Circ. Res. 61:632–640.

    Article  PubMed  CAS  Google Scholar 

  • Davies, P. F., 1995,. Flow-mediated endothelial mechanotransduction, Phys. Rev. 75: 519–560.

    CAS  Google Scholar 

  • Davis, M. J., and Sharma, N. R., 1994, Mechanism of substance P-induced hyperpolarization of porcine coronary artery endothelial cells, Am. J. Physiol. 266:H156–H164.

    PubMed  Google Scholar 

  • Edwards, G., Dora, K. A., Gardener, M. J., Garland, C. J., and Weston, A. H., 1998, K+ is an endothelium-derived hyperpolarising factor in rat arteries, Nature 396:269–272.

    Article  PubMed  CAS  Google Scholar 

  • Ewald, D. A., Williams, A., and Levitan, I. B., 1985, Modulation of single Ca2+-activated K+ channel activity by protein phosphorylation, Nature 315:503–506.

    Article  PubMed  CAS  Google Scholar 

  • Feletou, M., and Vanhoutte, P. M., 1988, Endothelium-dependent hyperpolarization of canine coronary smooth muscle, Br. J. Pharmacol. 93:515–524.

    Article  PubMed  CAS  Google Scholar 

  • Fichtner, H., Frobe, U., Busse, R., and Kohldardt, M., 1987, Single nonselective cation channels and Ca2+-activated K+ channels in aortic endothelial cells, J. Memb. Biol. 98:125–133.

    Article  CAS  Google Scholar 

  • Freay, A., Johns, A., Adams, D. J., Ryan, U. S., and van Breemen, C., 1989, Bradykinin and inositol 1,4,5-trisphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells, Pflügers Arch. 414:377–384.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F., and Vanhoutte, P. M., 1989, Endothelium-derived relaxing and contracting factors, FASEB J. 3:2007–2018.

    PubMed  CAS  Google Scholar 

  • Galves, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G. J., and Garcia, M. L, 1990, Purification and characterisation of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus, J. Biol. Chem. 265:11083–11090.

    Google Scholar 

  • Groschner, K., Graier, W. F., and Kukovetz, W. R., 1992, Activation of a small conductance Ca2+-dependent K+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells, Biochim. Biophys. Acta 1137:162–170.

    Article  PubMed  CAS  Google Scholar 

  • Grygorczyk, R., and Schwarz, W., 1983, Properties of the Ca2+-activated K+ conductance of human red cells as revealed by the patch clamp technique, Cell Calcium 4:499–510.

    Article  PubMed  CAS  Google Scholar 

  • Hallam, T. J., Pearson, J. D., and Needham, L. A., 1988, Thrombin-stimulated elevation of human endothelial cell cytoplasmic free calcium concentration causes prostacyclin production, Biochem. J. 251:243–249.

    PubMed  CAS  Google Scholar 

  • Hallam, T. J., Jacob, R., and Merritt, J. E., 1989, Influx of bivalent cations can be independent of receptor stimulation in human endothelial cells, Biochem. J. 259:125–129.

    PubMed  CAS  Google Scholar 

  • Hermann, A., and Erxleben, C., 1987, Charybdotoxin selectively blocks small Ca2+-activated K+ channels in Aplysia neurons, J. Gen. Physiol. 90:27–47.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer, J., Distler, A., Haase, W., and Gogelen, H., 1994, Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium, Proc. Natl. Acad. Sci. U.S.A. 91:2367–2371.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, R., 1990, Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells, J. Physiol (London) 421:55–77.

    CAS  Google Scholar 

  • Jacob, R., Merritt, J. E., Hallam, T. J., and Rink, T. J., 1988, Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells, Nature 335:40–44.

    Article  PubMed  CAS  Google Scholar 

  • Johns, A., Lategan, T. W., Lodge, N. J., Ryan, U. S., van Breemen, C., and Adams, D. J., 1987, Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells, Tissue Cell 19:733–745.

    Article  PubMed  CAS  Google Scholar 

  • Laskey, R. E., Adams, D. J., Johns, A., Rubanyi, G. M., and van Breemen, C., 1990, Membrane potential and Na+-K+ pump activity modulate resting and bradykinin-stimulated changes in cytosolic free calcium in cultured endothelial cells from bovine atria, J. Biol. Chem. 265:2613–2619.

    PubMed  CAS  Google Scholar 

  • Laskey, R. E., Adams, D. J., Cannell, M. B., and van Breemen, C., 1992, Calcium-entry dependent oscillations of cytoplasmic calcium concentration in cultured endothelial cell monolayers, Proc. Natl. Acad. Sci. U.S.A. 89:1690–1994.

    Article  PubMed  CAS  Google Scholar 

  • Ling, B. N., and O’Neill, W. C., 1992, Ca2+-dependent and Ca2+-permeable ion channels in aortic endothelial cells, Am. J. Physiol. 263:H1827–H1838.

    PubMed  CAS  Google Scholar 

  • Liickhoff, A., and Busse, R., 1990, Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential, Pflügers Arch. 416:305–311.

    Article  Google Scholar 

  • Marchenko, S. M., and Sage, S. O., 1993, Electrical properties of resting and acetylcholine-stimulated endothelium in intact rat aorta, J. Physiol. (London) 462:735–751.

    CAS  Google Scholar 

  • Marchenko, S. M., and Sage, S. O., 1994, Mechanism of acetylcholine action on membrane potential of endothelium of intact rat aorta, Am. J. Physiol. 266:H2388–H2395.

    PubMed  CAS  Google Scholar 

  • Marchenko, S. M., and Sage, S. O., 1996, Calcium-activated potassium channels in the endothelium of intact rat aorta, J. Physiol. (London) 492:53–60.

    CAS  Google Scholar 

  • Marchenko, S. M., and Sage, S. O., 1997, A novel mechanosensitive cationic channel from the endothelium of rat aorta, J. Physiol. (London) 498:419–425.

    CAS  Google Scholar 

  • Merke, G., and Daut, J., 1990, The electrical response of cultured guinea-pig coronary endothelial cells to endothelium-dependent vasodilators, J. Physiol. (London) 430:251–272.

    Google Scholar 

  • Merke, G., Pohl, U., and Daut, J., 1991, Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and guinea pig coronary endothelium, J. Physiol. (London) 439:277–299.

    Google Scholar 

  • Miller, C., Moczydlowski, E., Latorre, R., and Phillips, M., 1985, Charybdotoxin, an inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle, Nature 313:316–318.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, M. J., and Higgs, E. A., 1991, Nitric oxide: Physiology, pathophysiology and pharmacology, Pharmacol. Rev. 43:109–142.

    PubMed  CAS  Google Scholar 

  • Muraki, K., Imaizumi, Y., Ohya, S., Sato, K. Takii, T., Onozaki, K., and Watanabe, M., 1997, Apamin-sensitive Ca2+-dependent K+ current and hyperpolarization in human endothelial cells, Biochem. Biophys. Res. Commun. 236:340–343.

    Article  PubMed  CAS  Google Scholar 

  • Nilius, B., Viana, F., and Droogmans, G., 1997, Ion channels in vascular endothelium, Annu. Rev. Physiol. 59:145–170.

    Article  PubMed  CAS  Google Scholar 

  • Okahara, K, Sun, B, Kawasaki, T., Monden, and M., Kambayashi, J., 1998, Expression of platelet-activating factor receptor transcript-2 is induced by shear stress in HUVEC, Prostaglandins Other Lipid Mediato. 55:323–329.

    Article  CAS  Google Scholar 

  • Olesen, S.-P., Davies, P. F., and Clapham, D. E., 1988, Muscarinic-activated K+ current in bovine aortic endothelial cells, Circ. Res. 62:1059–1064.

    Article  PubMed  CAS  Google Scholar 

  • Redmond, E. M., Cahill, P. A., and Sitzman, J. V., 1998, Flow-mediated regulation of G-protein expression in cocultured vascular smooth muscle and endothelial cells, Arterioscler. Thromb. Vasc. Biol. 18:75–83.

    Article  PubMed  CAS  Google Scholar 

  • Rotrosen, D., and Gallin, J. I., 1986, Histamine type I occupancy increases endothelial cytosolic calcium, reduces F-actin and promotes albumin diffusion across cultured endothelial monolayers, J. Cell. Biol. 103:2379–2387.

    Article  PubMed  CAS  Google Scholar 

  • Rusko, J., Tanzi, F., van Breemen, C., and Adams, D. J., 1992, Calcium-activated potassium channels in native endothelial cells from rabbit aorta. Conductance, Ca2+ sensitivity and block, J. Physiol. (London) 455:601–621.

    CAS  Google Scholar 

  • Rusko, J., Vanslooten, G., and Adams, D. J., 1995, Caffeine-evoked, calcium-sensitive membrane currents in rabbit aortic endothelial cells, Br. J. Pharmacol. 115:133–141.

    Article  PubMed  CAS  Google Scholar 

  • Sage, S. O., Adams, D. J., and van Breemen, C., 1989, Synchronised oscillations in cytosolic free calcium concentration in confluent bradykinin-stimulated bovine pulmonary artery endothelial cell monolayers, J. Biol. Chem. 264:6–9.

    PubMed  CAS  Google Scholar 

  • Sauvé, L., Parent, R., Simoneau, C., and Roy, G., 1988, External ATP triggers a biphasic activation process of a calcium-dependent K+ current in cultured bovine aortic endothelial cells, Pflügers Arch. 412:469– 481.

    Article  PubMed  Google Scholar 

  • Tracey, W. R., and Peach, M. J., 1992, Differential muscarinic receptor mRNA expression by freshly isolated and cultured bovine endothelial cells, Circ. Res. 70:234–240.

    Article  PubMed  CAS  Google Scholar 

  • Usachev, Y. M., Marchenko, S. M., and Sage, S. O., 1995, Cytosolic calcium concentration in resting and stimulated endothelium of excised intact rat aorta, J. Physiol. (London) 489:309–317.

    CAS  Google Scholar 

  • Van Renterghem, C., Vigne, P., and Frelin, C., 1995, A charybdotoxin-sensitive, Ca2+-activated K+ channel in cultured vascular endothelial cells, J. Neurochem. 65:1274–1281.

    Article  PubMed  Google Scholar 

  • Ziegler, T., Bouzourene K., Harrison, V. J., Brunner, H. R., and Hayoz, D., 1998, Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells, Arterioscler. Thromb. Vasc. Biol. 18:686–692.

    Article  PubMed  CAS  Google Scholar 

  • Zymunt, P. M. and Högestätt, E. D., 1996, Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery, Br. J. Pharmacol. 117:1600–1606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sage, S.O., Marchenko, S.M. (2001). Single-Channel Properties of Ca2+ -Activated K+Channels in the Vascular Endothelium. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics