Skip to main content

Molecular Biology of Voltage-Gated K+Channels

  • Chapter
Potassium Channels in Cardiovascular Biology
  • 225 Accesses

Abstract

Voltage-gated K+ (Kv) channels may be assembled from various subunits as homoor heteromultimers. The pore-forming α-subunits are integral membrane proteins, which express functional tetrameric Kv channels in heterologous expression systems. Three main families encoding Kv channel α-subunits have been detected related to the Drosophila genes Shaker and ether-a-go-go and the human KvLQT1 (KCNQ1) gene. Members of each family contribute to cardiac Kv channels and to cardiac action potential repolarization. Auxiliary subunits do not express functional Kv channels by themselves. They associate with α-subunits and may modulate Kv channel properties, including voltage dependence of activation and inactivation, deactivation, single-channel conductance, recovery from inactivation, and pharmacology. Auxiliary β-subunits have a structure which suggests that they may function as NADPH-dependent oxidoreductases. Whether this putative enzymatic activity is independent of the association of β-subunits with the pore-forming α-subunits is not known. Auxiliary γ-subunits are similar in sequence and topology to Shaker-related α-subunits but yield functional Kv channels only when coexpressed with certain α-subunits. In most cases, however, the exact subunit compositions of native Kv channels have not been elucidated. Therefore, it is still difficult to know which of the cloned Kv channels contribute to the different components of outward K+ current in cardiac myocytes. In only a few cases has the combination of human genetics, molecular biology, electrophysiology, and pharmacology provided a clear-cut identification of the a and auxiliary subunits that contribute to native K+ currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, G. W., Sesti, F., Splawsi, I., Buck, M., Lehmann, M. H., Timothy, K. W., Keating, M. H., and Goldstein, S. A. N., 1999, MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmias, Cell 97:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Acker, H., 1998, Reactive oxygen intermediates as mediators for regulating ion channel activity, in: Oxygen Regulation of Ion Channels and Gene Expression (J.Lopez-Barneo and E. K. Weir, eds.), Futura, Armonk,N.Y. pp. 9–18.

    Google Scholar 

  • Attali, B., 1996, Ion channels: A new wave for heart rhythms, Nature 384:24–25.

    Article  PubMed  CAS  Google Scholar 

  • Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., and Romey, G., 1996, Kv LQT1 and IsK(minK) proteins associate to form the IKs cardiac potassium current, Nature 384:78–80.

    Article  PubMed  CAS  Google Scholar 

  • Barry, D. M., and Nerbonne, J. M., 1996, Myocardial potassium channels: Electrophysiological and molecular diversity, Annu. Rev. Physiol. 58:363–394.

    Article  PubMed  CAS  Google Scholar 

  • Barry, D. M., Trimmer, J. S., Merlie, J. P., and Nerbonne, J. M., 1995, Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels?, Circ. Res. 77:361–369.

    Article  PubMed  CAS  Google Scholar 

  • Barry, D. M., Xu, H., Schuessler, R. B., and Nerbonne, J. M., 1998, Functional knockout of the transient outward current, long QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 α subunit, Circ. Res. 83:560–567.

    Article  PubMed  CAS  Google Scholar 

  • Bixby, K. A., Nanao, M. H., Shen, N. V., Kreusch, A., Bellamy, H., Pfaffinger, P. J., and Choe, S., 1999,Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels, Nat. Struct.Biol. 6:38–43.

    Article  PubMed  CAS  Google Scholar 

  • Boyden, P. A., and Jeck, C. D., 1995, Ion channel function in disease, Cardiovasc. Res. 29:312–318.

    PubMed  CAS  Google Scholar 

  • Chandy, K. G., and Gutman, G. A., 1995, Voltage-gated potassium channel genes, in: Handbook of Receptors and Channels: Ligand- and Voltage-Gated Ion Channels (R. A. North, ed.) CRC Press, Boca Raton,Florida, pp. 1–71.

    Google Scholar 

  • Chouinard S. W., Wilson, G. F., Schlimgen, A. K., and Ganetzky, B., 1995, A potassium channel β subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila Hyperkinetic locus, Proc.Natl. Acad. Sci. U.S.A. 92:6763–6767.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. A., Arai, M., Prak, E. L., Brooks, S. A., Young, L. H., and Prystowsky, M. B., 1992, Characterization of a novel mRNA expressed by neurons in mature brain, J. Neurosci. Res. 31:273–284.

    Article  PubMed  CAS  Google Scholar 

  • Deal, K. K., England, S. K., and Tamkun, M. M., 1996, Molecular physiology of cardiac potassium channels,Physiol. Rev. 76:49–67.

    PubMed  CAS  Google Scholar 

  • De Biasi, M., Wang, Z., Accili, E., Wible, B., and Fedida, D., 1997, Open channel block of human heart hKv1.5 by the β-subunit hKvβ1.2, Am. J. Physiol. 272:H2932–H2941.

    PubMed  Google Scholar 

  • Dixon, J. E., Shi, W., Wang, H. S., McDonald, C, Yu, H., Wymore, R. S., Cohen, I. S., and McKinnon, D.,1996, Role of the Kv4.3 K+ channel in ventricular muscle: A molecular correlate for the transient outward current, Circ. Res. 79:659–668.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, D. A., Morais Cabral, J. H., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R., 1998, The structure of the potassium channel: Molecular basis of K+ conduction and selectivity, Science 280:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Engeland, B., Neu, A., Ludwig, J., Roeper, J., and Pongs, O., 1998, Cloning and functional expression of rat ether-a-go-go-like K+ channel genes, J. Physiol. (London) 513:647–654.

    Article  CAS  Google Scholar 

  • England, S., Uebele, V., Shear, H., Kodali, J., Bennett, P., and Tamkun, M., 1995, Characterization of voltage-gated K+ channel β subunit expressed in human heart, Proc. Natl. Acad. Sci. U.S.A. 92:6309–6313.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Wible, B., Li, G. R., Wang, Z., and Nattel, S., 1997, Antisense oligonucleotide directed against Kv1.5 mRNA specifically inhibits ultrarapid delayed rectifier K+ current in cultured human atrial myocytes,Circ. Res. 80:572–579.

    Article  PubMed  CAS  Google Scholar 

  • Feng, G., Tintrup, H., Kirsch, J., Nichol, M. C, Kuhse, J., Betz, H., and Sanes, J. R., 1998, Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity, Science 282:1321–1324.

    Article  PubMed  CAS  Google Scholar 

  • Giese, K. P., Storm, J. F., Reuter, D., Fedorov, N. B., Shao, L-R., Leicher, T., Pongs, O., and Silva, A. J.,1998, Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvβ1.1-deficient mice with impaired learning, Learning Memory 5:257–273.

    PubMed  CAS  Google Scholar 

  • Giles, W. R., and Imaizumi, Y., 1988, Comparison of potassium currents in rabbit atrial and ventricular cells,J. Physiol. (London) 405:123–145.

    CAS  Google Scholar 

  • Gulbis J. N., Mann, S., and MacKinnon, R., 1999, Structure of a voltage-dependent K+ channel β subunit,Cell 97:943–952.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham, L., Lu, Z., Abramson, Z., and MacKinnon, R., 1994, Mutations in the K+ channel signature sequence, Biophys. J. 66:1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1992, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer Associates, Inc., Sunderland,Massachusetts.

    Google Scholar 

  • Jan, Y. N., and Jan, L. Y., 1997, Cloned potassium channels from eukaryotes and prokaryotes, Annu. Rev.Neurosci. 20:91–123.

    Article  PubMed  CAS  Google Scholar 

  • Johns, D. C, Nuss, H. B., and Marban, E., 1997, Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4.2 constructs, J. Biol Chem. 272:31598–31603.

    Article  PubMed  CAS  Google Scholar 

  • Kong, W., Po, S., Yamagishi, T., Ashen, M. D., Stetten, G., and Tomaselli, G. F., 1998, Isolation and characterization of the human gene encoding Ito: Further diversity by alternative MRNA splicing, Am.J. Physiol. 275:H1963–H1970.

    PubMed  CAS  Google Scholar 

  • Kreusch, A., Pfaffinger, P. J., Stevens, C. F., and Choe, S., 1998, Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392:945–948.

    Article  PubMed  CAS  Google Scholar 

  • Kwak, Y. G., Hu, N. N., Wie, J., George, A. L., Grobaski, T. D., Tamkun, M. M., and Murray, K. T., 1999,Protein kinase A phosphorylation alters Kvβ1.3 subunit-mediated inactivation of the Kv1.5 potassium channel, J. Biol. Chem. 274:13928–13932.

    Article  PubMed  CAS  Google Scholar 

  • Leicher, T., Roeper, J., Weber, K., Wang, X., and Pongs, O., 1996, Structural and functional characterization of human potassium channel subunit β1 (KCNA1B), Neuropharmacology 35:787–795.

    Article  PubMed  CAS  Google Scholar 

  • Leicher, T., Bähring, R., Isbrandt, B., and Pongs, O., 1998, Coexpression of the KCNA3B gene product with Kvl.5 leads to a novel A-type potassium channel, J. Biol. Chem. 273:35095–35101.

    Article  PubMed  CAS  Google Scholar 

  • London, B., Jeron, A., Zhou, A., Buckett, P., Han, X., Mitchell, G. F., and Koren, G., 1998, Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and the first transmembrane segment of a voltage-gated potassium channel, Proc. Natl. Acad. Sci. U.S.A. 95:2926–2931.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Barneo, J., Montoro, R., Ortega-Saenz, P., and Urena, J., 1998, Oxygen-regulated ion channels, in:Oxygen Regulation of Ion Channels and Gene Expression (J. Lopez-Barneo and E. K. Weir, eds.), Futura Press, Armonk, N.Y. pp. 127–144.

    Google Scholar 

  • McCormack, T., and McCormack, K., 1994, Shaker K+ channel β subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell 79:1133–1135.

    Article  PubMed  CAS  Google Scholar 

  • Nabauer, M., and Käb, M., 1998, Potassium channel down regulation in heart failure, Cardiovasc. Res.37:324–334.

    Article  PubMed  CAS  Google Scholar 

  • Nabauer, M., Beuckelmann, D. J., Uberfuhr, P., and Steinbeck, G., 1996, Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93:168–177.

    Article  PubMed  CAS  Google Scholar 

  • Nagaya, N., and Papazian, D. M., 1997, Potassium channel α and β subunits assemble in the endoplasic reticulum, J. Biol Chem. 272:3022–3027.

    Article  PubMed  CAS  Google Scholar 

  • Papazian, D. M., 1999, Potassium channels: Some sssembly required. Neuron 23:7–10.

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Garciá, M. T., López-López, J. R., and González, C., 1999, Kvβ1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels, J. Gen. Physiol. 113:897–907.

    Article  PubMed  Google Scholar 

  • Pongs, O., 1999, Voltage-gated potassium channels: From hyperexcitability to excitement, FEBS Lett. 452:31–35.

    Article  PubMed  CAS  Google Scholar 

  • Rettig, J, Heinemann, S. H., Wunder, F., Lorra, C., Parcej, D. N., Dolly, J. O., and Pongs, O., 1994,Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit, Nature 369:289–294.

    Article  PubMed  CAS  Google Scholar 

  • Roberds, S. L., Knoth, K. M., Po, S., Blair, T. A, Bennett, P. B., Hartshorne, R. P., Snyders, D. J, and Tamkun, M. M., 1993, Molecular biology of the voltage-gated potassium channels of cardiovascular system. J. Cardiovasc. Physiol. 4:68–80.

    Article  CAS  Google Scholar 

  • Robertson, B., 1997, The real life of voltage-gated K+ channels: More than model behaviour. Trends Pharmacol. Sci. 18:474–483.

    PubMed  CAS  Google Scholar 

  • Roeper, J., Lorra, C., and Pongs, O., 1997, Frequency-dependent inactivation of mammalian A-type K+channel Kv1.4 regulated by Ca2+/calmodulin-dependent protein kinase, J. Neurosci. 17:3379–3391.

    PubMed  CAS  Google Scholar 

  • Ruppersberg, J. P., Frank, R., Pongs, O., and Stocker, M., 1991a, Cloned neuronal Ik(A) channels reopen during recovery from inactivation, Nature 353:657–660.

    Article  PubMed  CAS  Google Scholar 

  • Ruppersberg, J. P., Stocker, M., Pongs, O., Heinemann, S. H., Frank R., and Koenen, 1991b, Regulation of fast inactivation of cloned mammalian Ik(A) channels by cysteine oxidation, Nature 352:711–714.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T., 1995, A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKs potassium channel, Cell 81:299–307.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., Curran, M. E., Zou, A., Shen, J., Spector, P. S., Atkinson, D. L., and Keating, M. T., 1996,Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83.

    Article  PubMed  CAS  Google Scholar 

  • Scott, V. E., Rettig, J., Parcej, D. N., Keen, J. N., Findlay, F. B. C., Pongs, O., and Dolly, J. O., 1994, Primary structure of a β subunit of α-dendrotoxin-sensitive K+ channels from bovine brain, Proc. Natl. Acad. Sci.U.S.A. 91:1637–1641.

    Article  PubMed  CAS  Google Scholar 

  • Sewing, S., Roeper, J., and Pongs, O., 1996, Kvβ1 subunit binding specific for Shaker-related potassium channel a subunits, Neuron 16:455–463.

    Article  PubMed  CAS  Google Scholar 

  • Shi, G., Nakahira, K., Hammond, S., Rhodes, K. J., Schechter, L. E., and Trimmer, J. S., 1996, Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16:843–852.

    Article  PubMed  CAS  Google Scholar 

  • Shimoni, Y., Severson, D., and Giles, W. R., 1992, Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle, J. Physiol. (London) 488:673–688.

    Google Scholar 

  • Stern, M., and Ganetzky, B., 1989, Altered synaptic transmission in Drosophila Hyperkinetic mutants, J.Neurogenet. 5:215–228.

    Article  PubMed  CAS  Google Scholar 

  • Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S., and Nerbonne, J. M., 1997, Outward K+ current densities and Kvl.5 expression are reduced in chronic human atrial fibrillation, Circ. Res.80:772–781.

    Article  PubMed  Google Scholar 

  • Wang, Z., Feng, J., Pond, A. L., Nerbonne, J. M., and Nattel, S., 1999, The potential molecular basis of different physiological properties of transient outward K+ current in rabbit and human atrial myocytes,Circ. Res. 84:551–561.

    Article  PubMed  CAS  Google Scholar 

  • Weir, E. K., and Archer, S. L., 1995, The mechanism of acute hypoxic pulmonary vasoconstriction: The tale of two channels, FASEB J. 9:183–189.

    PubMed  CAS  Google Scholar 

  • Wickenden, A. D., Jegla, T. J., Kaprielian, R., and Backx, P. H., 1999, Regional contributions of Kv1.4, Kv4.2,and Kv4.3 to transient outward K+ current in rat ventricle. Am. J. Physiol. 276:H1599–H1607.

    PubMed  CAS  Google Scholar 

  • Wilson, G. F., Wang, Z., Chouinard, S. W., Griffith, L. C, and Ganetzky, B., 1998, Interaction of the K+channel β subunit. Hyperkinetic, with eag family members, J. Biol. Chem. 273:6389–6394.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Barry, D. M., Li, H., Brunet, S., Guo, W., and Nerbonne, J. M., 1999a, Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant negative Kv2 α subunit, Circ. Res. 85:623–633.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Guo, W., and Nerbonne, J. M., 1999b, Four kinetically distinct depolarization-activated outward K+currents in adult mouse ventricular myoctes, J. Gen. Physiol, 113:661–678.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., 1998, The moving parts of voltage-gated ion channels, Rev. Biophys. 31:239–295.

    Article  CAS  Google Scholar 

  • Yu, W., Xu, J., and Li, M., 1996, NAB domain is essential for the subunit assembly of both alpha-alpha and alpha-beta complexes of Shaker-like potassium channels, Neuron 16:441–453.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S. R., Wulf, A., Schwarz, M., Isbrandt, D., and Pongs, O., 1999a, Characterization of human Kv4.2 mediating a rapidly-inactivating transient voltage-sensitive K+ current, Recept. Channels, 6:387–400.

    PubMed  CAS  Google Scholar 

  • Zhu, X.-R., Netzer, R., Blke, K., Liu, A., and Pongs, O., 1999b, Structural and functional characterization of Kv6.2, a new -subunit of voltage-gated potassium channel, Recept. Channels, 6:337–350.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pongs, O. (2001). Molecular Biology of Voltage-Gated K+Channels. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics