Skip to main content

Potassium Channels in the Coronary Circulation

  • Chapter
Potassium Channels in Cardiovascular Biology
  • 212 Accesses

Abstract

The heart consumes more oxygen per gram of tissue than any other organ of the body. One of the most striking features of the coronary circulation is the close relationship between the requirement for oxygen and metabolic substrates and the magnitude of coronary blood flow. The mechanisms underlying this interaction are still poorly understood but seem to involve adaptive regulatory processes in the coronary macro-and microvasculature. Daut et al. (1990) first demonstrated that hypoxic vasodilation in isolated, perfused guinea pig hearts is prevented by glibenclamide (Fig. 1), suggesting a role for adenosine triphosphate-sensitive K+ (KATP) channels, in the regulation of adaptive processes in the coronary macro- and microvasculature and making the investigation of KATP channels in the coronary circulation clinically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albarwani S., Heinert G., Turner J. L., and Kozlowski R. Z., 1995, Differential K+ channel distribution in smooth muscle cells isolated from the pulmonary arterial tree of the rat, Biochem. Biophys. Res. Commun. 208:183-189.

    Article  PubMed  CAS  Google Scholar 

  • Archer S. L., 1996, Diversity of phenotype and function of vascular smooth muscle cells, J. Lab. Clin. Med. 127:524-529

    Article  PubMed  CAS  Google Scholar 

  • Archer, S. L., Huang, J. M. C., Hampl, V., Nelson, D. P., Shultz, P. J., and Weir, E. K., 1994, Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP- dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 91:7583-7587.

    Article  PubMed  CAS  Google Scholar 

  • Balwierczak, J. L., Krulan, C. M., Kim, H. S., DelGrande, D., Weiss, G. B., and Hu, S., 1995, Evidence that BKCa channel activation contributes to K+ channel opener induced relaxation of the porcine coronary artery, Naunyn-Schmiedeberg’s Arch. Pharmacol. 352:213-221.

    CAS  Google Scholar 

  • Bean B. P., 1991, Pharmacology of calcium channels in cardiac muscle, vascular muscle, and neurons. Am. J. Hypertens. 4:406S-411S.

    PubMed  CAS  Google Scholar 

  • Beech D. J, and Bolton T. B., 1989a, Two components of potassium current activated by depolarization of single smooth muscle cells from rabbit portal vein, J. Physiol. 418:293-309.

    PubMed  CAS  Google Scholar 

  • Beech D. J, and Bolton T. B., 1989b, A voltage-dependent outward current with fast kinetics in single smooth muscle cells isolated from rabbit portal vein, J. Physiol. 412:397-414.

    PubMed  CAS  Google Scholar 

  • Benditt E. P, and Benditt J. M., 1973, Evidence for a monoclonal origin of human atherosclerotic plaques, Proc. Natl. Acad. Sci. U.S.A. 70:1753-1756.

    Article  PubMed  CAS  Google Scholar 

  • Benham C. D., and Bolton T. B., 1986, Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit, J. Physiol. 381:385-406.

    PubMed  CAS  Google Scholar 

  • Berger M. G., Vandier C., Bonnet P., Jackson W. F., and Rusch N. J., 1998, Intracellular acidosis differentially regulates Kv channels in coronary and pulmonary vascular muscle. Am. J. Physiol. 275:H1351-H1359.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1997, Elementary and global aspects of calcium signaling, J. Physiol. (London) 499:290-306.

    Google Scholar 

  • Block L. H., and Buhler F. R., 1992, Atherosclerosis, cell motility, calcium, and calcium-channel blockers, J. Cardiovasc. Pharmacol. 19:S1-S3.

    Article  PubMed  CAS  Google Scholar 

  • Bolton T. B., and Lim S. P., 1989, Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine, J. Physiol. 409:385-401.

    PubMed  CAS  Google Scholar 

  • Bonev A. D., and Nelson M. T., 1996, Vasoconstrictors inhibit ATP-sensitive K+ channels in arterial smooth muscle through protein kinase C, J. Gen. Physiol. 108:315-323.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard J. F., Dumont E., and Lamontagne D., 1994, Evidence that prostaglandins I2, E2, and D2 may activate ATP-sensitive potassium channels in the isolated rat heart, Cardiovasc. Res. 28: 901-905.

    Article  PubMed  CAS  Google Scholar 

  • Brayden J. E., and Nelson M. T., 1992, Regulation of arterial tone by activation of calcium-dependent potassium channels, Science 256:532-535.

    Article  PubMed  CAS  Google Scholar 

  • Bruch L., Bychkov, R., Kästner, A., Blow, T., Ried, C., Gollasch, M., Baumann, G., Luft, F. C., and Haller, H., 1997, Pituitary adenylate-cyclase-activating peptides relax human coronary arteries by activating K(ATP) and K(Ca) channels in smooth muscle cells, J. Vasc. Res. 34:11-18..

    PubMed  CAS  Google Scholar 

  • Bruch, L., Rubel, S., Kästner, A., Gellert, K., Gollasch, M., and Witt, C., 1998, Pituitary adenylate cyclase activating peptides relax human pulmonary arteries by activating KATP and KCa channels, Thorax 53:586-587

    Article  PubMed  CAS  Google Scholar 

  • Buljubasic, N., Marijic, J., Kampine, J. P., and Bosnjak, Z. J., 1993, Calcium-sensitive potassium current in isolated canine coronary smooth muscle cells. Can. J. Physiol. Pharmacol. 72:189-198.

    Article  Google Scholar 

  • Bychkov, R., Gollasch, M., Ried, C., Luft, F.C., and Haller, H., 1997a, Effects of pinacidil on Ca2+-activated and ATP-dependent K+ channels in human coronary artery vascular smooth muscle cells, Am. J. Physiol. 273:C161-C171.

    PubMed  CAS  Google Scholar 

  • Bychkov, R., Gollasch, M., Ried, C., Luft, F.C., and Haller, H., 1997b, Regulation of spontaneous transient outward potassium currents in human coronary arteries, Circulation 95:503-510.

    Article  PubMed  CAS  Google Scholar 

  • Bychkov, R., Gollasch, M., Steinke, T., Ried, C., Luft, F. C., and Haller, H., 1998, Calcium-activated potassium channels and nitrate-induced vasodilation of human coronary arteries, J. Pharmacol. Exp. Ther. 285:293-298.

    PubMed  CAS  Google Scholar 

  • Cai, D., Mulle, J. G., and Yue, D. T., 1997, Inhibition of recombinant Ca2+ channels by benzothiazepines and phenylalkylamines: Class-specific pharmacology and underlying molecular mechanisms, Mol. Pharmcol. 51:872-881.

    CAS  Google Scholar 

  • Campbell, J. H., and Campbell, G. R., 1994, Cell biology of atherosclerosis, J Hypertens Suppl. 12 (10):S129-S132.

    CAS  Google Scholar 

  • Cole, W. C., Clement-Chmienne, O., and Aillo, E. A., 1996, Regulation of 4-aminopyridine-sensitive, delayed rectifier K+ channels in vascular smooth muscle by phosphorylation, Biochem. Cell. Biol. 74:439-447.

    Article  PubMed  CAS  Google Scholar 

  • Dart, C., and Standen, N. B., 1993, Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery, J. Physiol. 471:767-786.

    PubMed  CAS  Google Scholar 

  • Dart, C., and Standen, N. B., 1995, Activation of ATP-dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery, J. Physiol. 483:29-39.

    PubMed  CAS  Google Scholar 

  • Daut, J., Maier-Rudolph, W., von Beckerath, N., Mehrke, G., Günther, K., and Goedel-Meinen, L., 1990, Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels, Science, 247:1341-1344.

    Article  PubMed  CAS  Google Scholar 

  • Daut, J., Standen, N. B., and Nelson, M. T., 1994, The role of the membrane potential of endothelial and smooth muscle cells in the regulation of coronary blood flow, J Cardiovasc. Electrophysiol. 5 (2):154-181.

    Article  PubMed  CAS  Google Scholar 

  • Eckman, D. M., Frankovich, J. D., Keef, K. D., 1992, Comparison of the actions of acetylcholine and BRL 38227 in the guinea-pig coronary artery. Br. J. Pharmacol. 106(1):9-16.

    Article  PubMed  CAS  Google Scholar 

  • Eckman, D. M., Weinert, J. S., Buxton, I. L., and Keef, K. D., 1994, Cyclic GMP-independent relaxation and hyperpolarization with acetylcholine in guinea-pig coronary artery, Br. J. Pharmacol. 111:1053-1060.

    Article  PubMed  CAS  Google Scholar 

  • Frid, M. G., Moiseeva, E. P., and Stenmark, K. R., 1994, Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo, Circ. Res. 75:669-681.

    Article  PubMed  CAS  Google Scholar 

  • Ganitkevich, V. Y., and Isenberg, G., 1990, Isolated guinea pig coronary smooth muscle cells. Acetylcholine induces hyperpolarization due to sarcoplasmic reticulum calcium release activating potassium channels, Circ. Res. 67:525-528.

    Article  PubMed  CAS  Google Scholar 

  • Ganitkevich, Vya, and Isenberg, G., 1993, Membrane potential modulates inositol 1,4,5-trisphosphatemediated Ca2+ transients in guinea-pig coronary myocytes, J Physiol (London) 470:35-44.

    CAS  Google Scholar 

  • Ganitkevich, V. Y., and Isenberg, G., 1996, Effect of membrane potential on the initiation of acetylcholine- induced Ca2+ transients in isolated guinea pig coronary myocytes, Circ. Res. 78:717-723.

    Article  PubMed  CAS  Google Scholar 

  • Gelband, C. H., and Hume, J. R., 1992, Ionic currents in single smooth muscle cells of the canine renal artery, Circ. Res. 71:745-758.

    Article  PubMed  CAS  Google Scholar 

  • Gelband, C. H., and McCullough, J. R., 1993, Modulation of rabbit aortic Ca2+-activated K+ channels by pinacidil, cromakalim, and glibenclamide, Am. J. Physiol. 264:C1119-C1127.

    PubMed  CAS  Google Scholar 

  • Godfraind, T., Dessy, C., and Salomone, S., 1992, A comparison of the potency of selective L-type calcium channel blockers in human coronary and internal mammary arteries exposed to serotonin. J. Pharmacol. Exp. Ther. 263:112-122.

    PubMed  CAS  Google Scholar 

  • Gollasch, M., and Nelson, M. T., 1997, Voltage-dependent Ca2+ channels in arterial smooth muscle cells, Kidney Blood Pressure Res. 20:355-371.

    Article  CAS  Google Scholar 

  • Gollasch, M., Haller, H., Schultz, G., and Hescheler, J., 1991, Thyrotropin-releasing hormone induces opposite effects on Ca2+ channel currents in pituitary cells by two pathways, Proc. Natl. Acad. Sci. U.S.A. 88:10262-10266.

    Article  PubMed  CAS  Google Scholar 

  • Gollasch, M., Hescheler, J., Quayle, J. M., Patlak, J. B., and Nelson, M. T., 1992, Single calcium channel currents of arterial smooth muscle at physiological calcium concentrations. Am. J. Physiol. 263(5):C948-C952.

    PubMed  CAS  Google Scholar 

  • Gollasch, M., Kleuss, C., Hescheler, J., Wittig, B., and Schultz, G., 1993, Gi2 and protein kinase C are required for thyrotropin-releasing hormone-induced stimulation of voltage-dependent Ca2+ channels in pituitary GH3 cells, Proc. Natl. Acad. Sci U.S.A. 90:6265-6269.

    Article  PubMed  CAS  Google Scholar 

  • Gollasch, M., Bychkov, R., Ried. C., Behrendt, F., Scholze, S., Luft, F. C., and Haller, H., 1995, Pinacidil relaxes porcine and human coronary arteries by activating ATP-dependent potassium channels in smooth muscle cells, J. Pharmacol. Exp. Ther. 275:681-692.

    PubMed  CAS  Google Scholar 

  • Gollasch, M., Ried, C., Bychkov, R., Luft, F. C., and Haller, H., 1996a, K+ currents in human coronary artery vascular smooth muscle cells, Circ. Res. 78:676-688.

    Article  PubMed  CAS  Google Scholar 

  • Gollasch, M., Ried, C., Liebold, M., Haller, H., Hofmann, F., and Luft, F. C., 1996b, High permeation of L-type Ca2+ channels at physiological [Ca2+]: Homogeneity and dependence on the α1-subunit, Am. J. Physiol. 271:C842-C850.

    PubMed  CAS  Google Scholar 

  • Gollasch, M., Wellman, G. C., Knot, H. J., Jaggar, J. H., Damon D. H., Bonev, A. D., and Nelson, M. T., 1998a, Ontogeny of local SR calcium signals in cerebral arteries: Ca2+ sparks as elementary physiological events, Circ. Res. 83:1104-1114.

    Article  PubMed  CAS  Google Scholar 

  • Gollasch, M., Haase, H., Ried, C., Lindschau, C., Miethke, A., Morano, I., Luft, F. C., and Haller, H., 1998b, Expression of L-type calcium channels depends on the differentiated state of vascular smooth muscle cells, FASEB J. 12:593-601.

    PubMed  CAS  Google Scholar 

  • Hara, Y., Kitamura, K., and Kuriyama, H., 1980, Actions of 4-aminopyridine on vascular smooth muscle tissues of guinea pig, Br. J. Pharmacol. 68:99-106.

    Article  PubMed  CAS  Google Scholar 

  • Harder, D. R., 1984, Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ. Res. 55:197-202.

    Article  PubMed  CAS  Google Scholar 

  • Harder, D. R., Gilbert, R., and Lombard, J. H., 1987, Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. Am. J. Physiol. 253(4):F778-F781.

    PubMed  CAS  Google Scholar 

  • Hering, S., Hughes, A. D., Timin, E. N., and Bolton, T. B., 1993, Modulation of calcium channels in arterial smooth muscle cells by dihydropyridine enantiomers. J. Gen. Physiol. 101:393-410.

    Article  PubMed  CAS  Google Scholar 

  • Hermsmeyer, R. K., 1988, Pinacidil actions on ion channels in vascular muscle. J. Cardiovasc. Pharmacol. 12(Suppl. II):S17-S22.

    Article  PubMed  CAS  Google Scholar 

  • Hirst, G. D., and Edwards, F. R., 1989, Sympathetic neuroeffector transmission in arteries and arterioles, Physiol. Rev. 69:546-604.

    PubMed  CAS  Google Scholar 

  • Hu, S., Kim, H. S., Okolie, P., and Weiss, G. B., 1990, Alterations by glyburide of effects of BRL 34915 and P 1060 on contraction, 86Rb efflux and the maxi-K+ channel in rat portal vein, J. Pharmacol. Exp. Ther. 253:771-777.

    PubMed  CAS  Google Scholar 

  • Hume, J. R., and Leblanc, N., 1989, Macroscopic K+ currents in single smooth muscle cells of the rabbit portal vein, J. Physiol. 413:49-73.

    PubMed  CAS  Google Scholar 

  • Imamura, Y., Tomoike, H., Narishige, T., Takahashi, T., Kasuya, H., and Takshita, A., 1992, Glibenclamide decreases basal coronary blood flow in anesthetized dogs, Am. J. Physiol. 263:H399-H404.

    PubMed  CAS  Google Scholar 

  • Inoue, R., Okabe, K., Kitamura, K., and Kuriyama, H., 1986, A newly identified Ca2+ dependent K+ channel in the smooth muscle membrane of single cells dispersed from the rabbit portal vein, Pflügers Arch. 406:138-143.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, T., Hume, J. R., and Keef, K. D., 1993, Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells, J. Physiol. 468:379-400.

    PubMed  CAS  Google Scholar 

  • Ishikawa, T., Eckman, D. M., and Keef, K. D., 1997, Characterization of delayed rectifier K+ currents in rabbit coronary artery cells near resting membrane potential, Can. J. Physiol. Pharmacol. 75:1116-1122.

    PubMed  CAS  Google Scholar 

  • Itoh, T., Seki, N., Suzuki, S., Ito, S., Kajikuri, J., and Kuriyama, H., 1992, Membrane hyperpolarization inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery, J. Physiol. (London) 451:307-328.

    CAS  Google Scholar 

  • Jackson, W. F., Konig, A., Dambacher, T., and Busse, R., 1993, Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels, Am. J. Physiol. 264:H238-H243.

    PubMed  CAS  Google Scholar 

  • Jaggar, J. H., Wellman, G. C., Heppner, T. J., Porter, V. A., Perez, G. J., Knot, H. J., Gollasch, M., Kleppisch, T., Rubart, M., Stevenson, A.S., Lederer, W.J., Bonev, A.D., and Nelson, M.T., 1998, Ca2+ channels, ryanodine receptors, and Ca2+-activated K+ channels: A functional unit for regulating arterial tone, Acta Scand. Physiol. 164:577-588.

    Article  CAS  Google Scholar 

  • Klieber, H. G., and Daut, J., 1994, A glibenclamide-sensitive potassium conductance in terminal arterioles isolated from giunea pig heart, Cardiovasc. Res. 28:823-830.

    Article  PubMed  CAS  Google Scholar 

  • Klückner, U., and Isenberg, G., 1991, Myocytes isolated from porcine coronary arteries: Reduction of currents through L-type Ca-channels by verapamil-type Ca-antagonists, J. Physiol. Pharmacol. 42:163-179.

    Google Scholar 

  • Knot, H. J., and Nelson, M. T., 1995, Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am. J. Physiol. 269(1):H348-H355.

    PubMed  CAS  Google Scholar 

  • Knot, H. J., Zimmermann, P. A., and Nelson, M. T., 1996a, Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels, J. Physiol. (London) 492( Part 2): 419-430.

    CAS  Google Scholar 

  • Knot, H. J., Brayden, J. B., and Nelson, M. T., 1996b, Calcium and potassium channels, in: Biochemistry of Smooth Muscle Contraction (M. Barany, ed.) Academic Press, San Diego, pp. 203-219.

    Chapter  Google Scholar 

  • Knot, H. J., Bonev, A. D., Mulieri, L. A., LeWinter, M. M., and Nelson, M. T., 1998, Functional role of inward rectifier K+ (KIR) channels in coronary resistance arteries from humans, Circulation 98:I489.

    Article  Google Scholar 

  • Ko, Y. D., Sachinidis, A., Graack, G. H., Appenheimer, M., Wieczorek, A.J., Dusing, R., and Vetter, H., 1992, Inhibition of angiotensin II and platelet-derived growth factor-induced vascular smooth muscle cell proliferation by calcium entry blockers, Clin. Invest. 70(2):113-117.

    Article  Google Scholar 

  • Kruse, H. J., Bauriedel, G., Heimerl, J., Hofling, B., and Weber, P. C., 1994, Role of L-type calcium channels on stimulated calcium influx and on proliferative activity of human coronary smooth muscle cells, J. Cardiovasc. Pharmacol. 24:328-335.

    PubMed  CAS  Google Scholar 

  • Kubo, M., Nakaya, Y., Matsuoka, S., Saito, K., and Kuroda, Y., 1994, Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP-sensitive K+ channels in cultured vascular smooth muscle cells, Circ. Res. 74:471-476.

    Article  PubMed  CAS  Google Scholar 

  • Kuga, T., Kobayashi, S., Hirakawa, Y., Kanaide, H., and Takeshita, A., 1996, Cell cycle-dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture, Circ. Res. 79:14-19.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, L., Chilian, W. M., and Davis, M. J., 1990, Coronary arteriolar myogenic response is independent of endothelium, Circ. Res. 66:860-866.

    Article  PubMed  CAS  Google Scholar 

  • Langton, P. D., Nelson, M. T., Huang, Y., and Standen, N. B., 1991, Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions. Am. J. Physiol. 260:H927-H934.

    PubMed  CAS  Google Scholar 

  • Leblanc, N., Wan, X., and Leung, P. M., 1994, Physiological role of Ca2+-activated and voltage-dependent K+ currents in rabbit coronary myocytes. Am. J. Physiol. 266:C1523-C1537.

    PubMed  CAS  Google Scholar 

  • Li, P. L., Zou, A. P., and Campbell, W. B., 1997, Regulation of potassium channels in coronary arterial smooth muscle by endothelium-derived vasodilators, Hypertension 29:262-267.

    Article  PubMed  Google Scholar 

  • Lipp, P., and Niggli, E., 1998, Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes, J. Physiol. 508:801-809.

    Article  PubMed  CAS  Google Scholar 

  • Luft, U. C., Bychkov, R., Gollasch, M., Rollet, J. B., Hofmann, F., Haller, H., and Luft, F. C., 1999, Farnesol blocks L-type Ca2+ channels targeting the αlC-subunit, Arterioscler. Thromb. Vasc. Biol. in press.

    Google Scholar 

  • Luft, U. C., Bychkov, R., Gollasch, M., Gross, V., Roullet, J. B., McCarron, D. A., Ried, C., Yagil, Y., Yagil, H., Hofmann, F., Haller, H., Luft, F. C., 1999, Farnesol blocks L-type Ca2+ channels targeting the αlc-subunit. Anterioscler. Throm. Vasc. Biol. 19:959-966.

    Article  CAS  Google Scholar 

  • Luo, Z., Fuentes, M. E., and Taylor, P., 1994, Regulation of acetylcholinesterase mRNA stability by calcium during differentiation from myoblasts to myotubes, J. Biol. Chem. 269:27216-27223.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., 1987, Morphological differentiation of cultured astrocytes is blocked by cadmium or cobalt, Brain Res. 420:175-177.

    Article  PubMed  CAS  Google Scholar 

  • Miller, F. J., Dellsperger, K. C., and Gutterman, D. D., 1997, Myogenic constriction of human coronary arterioles, Am. J. Physiol. 273:H257-H264.

    PubMed  CAS  Google Scholar 

  • Miller, F. J., Dellsperger, K. C., and Gutterman, D. D., 1998, Pharmacologic activation of the human coronary microcirculation in vitro: Endothelium-dependent dilation and differential responses to acetylcholine, Cardiovasc. Res. 38:744-750.

    Article  PubMed  CAS  Google Scholar 

  • Miura, H., and Gutterman, D. D., 1998, Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca2+-activated K+ channels, Circ. Res. 83:501-507.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, Y., and Nakaya, Y., 1991, Angiotensin II blocks ATP-sensitive K+ channels in porcine coronary artery smooth muscle cells, Biochem. Biophys. Res. Commun. 181:700-706.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., and Nakaya, Y., 1993, Activation of ATP-sensitive K+ channels by cyclic AMP-dependent protein kinase in cultured smooth muscle cells of porcine coronary artery, Biochem. Biophys. Res. Commun. 193:240-247.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, Y., Nakaya, Y., Wakatsuki, T., Nakaya, S., Fujino, K., Saito, K., and Inoue, I., 1992, Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery, Circ. Res. 70:612-616.

    Article  PubMed  CAS  Google Scholar 

  • Morano, I. L., 1992, Molecular biology of smooth muscle, J. Hypertens. 10(5):411-416.

    Article  PubMed  CAS  Google Scholar 

  • Munro, E., Patel, M., Chan, P., Betteridge, L., Gallagher, K., Schachter, M., Wolfe, J., and Sever P., 1994, Effect of calcium channel blockers on the growth of human vascular smooth muscle cells derived from saphenous vein and vascular graft stenoses, J. Cardiovasc. Pharmacol. 23:779-784.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, M., Mombouli, J. V., Taylor, A. A., and Vanhoutte, P. M., 1993, Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries, J. Clin. Invest. 92:2867-2871.

    Article  PubMed  CAS  Google Scholar 

  • Neild, T. O., and Keef, K., 1985, Measurements of the membrane potential of arterial smooth muscle in anesthetized animals and its relationship to changes in artery diameter, Microvasc. Res. 30:19-28.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol. 268(4):C799-C822.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Patlak, J. B., Worley, J. F., and Standen, N. B., 1990, Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone, Am. J. Physiol. 259(1):C3-C18.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Cheng, H., Rubart, M., Santana, L.F., Bonev, A. D., Knot, H. J., and Lederer, W.J., 1995, Relaxation of arterial smooth muscle by calcium sparks, Science 270:633-637.

    Article  PubMed  CAS  Google Scholar 

  • Okabe, K., Kitamura, K., and Kuriyama, H., 1987, Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery, Pflügers Arch. 409:561-568.

    Article  PubMed  CAS  Google Scholar 

  • Ottolia, M., and Toro, L., 1996, Reconstitution in lipid bilayers of an ATP-sensitive K+ channel from pig coronary smooth muscle, J. Membr. Biol. 153:203-209.

    Article  PubMed  CAS  Google Scholar 

  • Owens, G. K., 1995, Regulation of differentiation of vascular smooth muscle cells, Physiol. Rev. 75:487-517.

    PubMed  CAS  Google Scholar 

  • Parkington, H. C., Tonta, M. A., Coleman, H. A., and Tare, M., 1995, Role of membrane potential in endothelium-dependent relaxation of guinea-pig coronary arterial smooth muscle, J. Physiol. 484:469480.

    Google Scholar 

  • Parratt, J. R., and Kane, K. A., 1994, KATP channels in ischaemic preconditioning, Cardiovasc. Res. 28:783-787.

    Article  PubMed  CAS  Google Scholar 

  • Porter, V. A., Bonev, A. D., Knot, H. J., Heppner, T. J., Stevenson, A. S., Kleppisch T., Lederer, W. J., and Nelson, M. T., 1998, Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides, Am. J. Physiol. 274:C1346-C1355.

    PubMed  CAS  Google Scholar 

  • Prout, T. E., Knatterud, G. L., Meinert, C. L., and Klimt, C. R., 1972, The UGDP controversy. Clinical trials versus clinical implication, Diabetes 21:1035-1040.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., McCarron, J. G., Brayden, J. E., and Nelson, M.T., 1993, Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries, Am. J. Physiol. 265:C1363-C1370.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., Bonev, A. D., Brayden, J. E., and Nelson, M. T., 1994, Calcitonin-gene related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A, J. Physiol. 475:9-13.

    CAS  Google Scholar 

  • Quayle, J. M., Nelson, M. T., and Standen, N. B., 1997, ATP-sensitive and inwardly rectifying potassium channels in smooth muscle, Physiol. Rev. 77:1165-1232.

    PubMed  CAS  Google Scholar 

  • Reber, B. F., and Reuter, H., 1991, Dependence of cytosolic calcium in differentiating rat pheochromocytoma cells on calcium channels and intracellular stores, J. Physiol. (London) 435:145-162.

    CAS  Google Scholar 

  • Rembold, C. M., and Murphy, R. A., 1993, Models of the mechanism for crossbridge attachment in smooth muscle, J. Muscle Res. Cell Motil. 14(3):325-334.

    Article  PubMed  CAS  Google Scholar 

  • Ried, C., 1997, Kalzium- und Kaliumkanäle in humanen koronararteriellen GefäBmuskelzellen, Doctoral thesis, Humboldt-Universität zu Berlin, Berlin, Germany.

    Google Scholar 

  • Robertson, B. E., and Nelson, M. T., 1994, Aminopyridine inhibition and voltage dependence of K+ currents in smooth muscle cells from cerebral arteries, Am. J. Physiol. 267:C1589-C1597.

    PubMed  CAS  Google Scholar 

  • Robertson, B. E., Schubert, R., Hescheler, J., and Nelson, M. T., 1993, cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells, Am. J. Physiol. 265:C299-C303.

    PubMed  CAS  Google Scholar 

  • Robertson, B. E., Bonev, A. D., and Nelson, M. T., 1996, Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: Block by Mg2+, Ca2+, and Ba2+, Am. J. Physiol. 271:H696-H705.

    PubMed  CAS  Google Scholar 

  • Ross, R., 1995, Growth regulatory mechanisms and formation of the lesions of atherosclerosis, Ann. N. Y. Acad. Sci. 748:1-4.

    Article  PubMed  CAS  Google Scholar 

  • Rubart, M., Patlak, J. B., and Nelson, M. T., 1996, Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations, J. Gen. Physiol. 107:459-472.

    Article  PubMed  CAS  Google Scholar 

  • Ruegg, J. C., and Pfitzer, G., 1991, Contractile protein interactions in smooth muscle, Blood Vessels 28(1-3):159-163.

    PubMed  CAS  Google Scholar 

  • Rusch, N. J., and Liu, Y., 1997, Potassium channels in hypertension: Homeostatic pathways to buffer arterial contraction, J. Lab. Clin. Med. 130:245-251.

    Article  PubMed  CAS  Google Scholar 

  • Samaha, F. F., Heineman, F. W., Ince, C., Fleming, J., and Balaban, R. S., 1992, ATP-sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo, Am. J. Physiol. 262:C1220-C1227.

    PubMed  CAS  Google Scholar 

  • Satoh, H., Katoh, H., Velez, P., Fill, M., and Bers, D. M., 1998, Bay K 8644 increases resting Ca2+ spark frequency in ferret ventricular myocytes independent of Ca influx. Contrast with caffeine and ryanodine effects, Circ. Res. 83:1192-1204.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, R., and Mulvany M. J., 1999, The myogenic response. Established facts and attractive hypotheses, Clin. Sci. 96:313-326.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, S. M., Heimark, R. L., and Majesky, M. W., 1990, Developmental mechanisms underlying pathology of arteries, Physiol. Rev. 70:1177-1209.

    PubMed  CAS  Google Scholar 

  • Schwartz, S. M., Majesky, M. W., and Murry, C. E., 1995, The intima: Development and monoclonal responses to injury, Atherosclerosis 118:S125-S140.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, G., Emden, J., Wenzel, K., Mironneau, J., and Stock, G., 1992, Potassium channel activation in vascular smooth muscle, Adv. Exp. Med. Biol. 311:53-72.

    Article  PubMed  CAS  Google Scholar 

  • Silberberg, S. D., and van Breemen, C., 1990, An ATP, calcium and voltage sensitive potassium channel in porcine coronary artery smooth muscle cells, Biochem. Biophys. Res. Commun. 172:517-522.

    Article  PubMed  CAS  Google Scholar 

  • Smirnov, S. V., and Aaronson P. I., 1992, Ca2+-activated and voltage-gated K+ currents in smooth muscle cells isolated from mesenteric arteries, J. Physiol. 457:431- 454.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. P., and Somlyo, A. V., 1994, Smooth muscle: excitation-contraction coupling, contractile regulation, and the cross-bridge cycle, Alcohol Clin. Exp. Res. 18(1):138-143.

    Article  PubMed  Google Scholar 

  • Spitzer, N. C., Debaca, R. C., Allen, K. A., and Holliday, J., 1993, Calcium dependence of differentiation of GABA immunoreactivity in spinal neurons, J. Comp. Neurol. 337(1):168-175.

    Article  PubMed  Google Scholar 

  • Standen, N. B., Quayle, J. M., Davies, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T., 1989, Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245:177-180.

    Article  PubMed  CAS  Google Scholar 

  • Stockbridge, N., Zhang, H., and Weir, B., 1991, Effects of K+ channel agonists cromakalim and pinacidil on rat basilar artery smooth muscle cells are mediated by Ca2+ activated K+ channels, Biochem. Biophys. Res. Commun. 181:172-178.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Meera, P., Song, M., Knaus, H. G., and Toro, L., 1997, Molecular constituents of maxi KCa channels in human coronary smooth muscle: Predominant alpha + beta subunit complexes, J. Physiol. 502:545-557.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, J., Furukawa, K.-I., and Shigekawa, M., 1993, Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells, Pflügers Arch. 423:167-172.

    Article  PubMed  CAS  Google Scholar 

  • Tomai, F., Crea, F., Gaspardone, A., Versaci, F., De Paulis, R., Penta de Peppo, A., Chiariello, L., and Gioffre, P. A., 1994, Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in man, Circulation, 90:700-705.

    Article  PubMed  CAS  Google Scholar 

  • Volk, K. A., and Shibata, E. F., 1993, Single delayed rectifier potassium channels from rabbit coronary artery myocytes, Am. J. Physiol. 264:H1146-H1153.

    PubMed  CAS  Google Scholar 

  • Volk, K. A., Matsuda, J. J., and Shibata, E. F., 1991, A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells, J. Physiol. 439:751-768.

    PubMed  CAS  Google Scholar 

  • Von Beckerath, N., Cyrys, S., Dischner, A., and Daut, J., 1991, Hypoxic vasodilation in isolated, perfused guinea-pig heart: An analysis of the underlying mechanisms, J. Physiol. 442:297-319.

    Google Scholar 

  • Wakatsuki, T., Nakaya, Y., and Inoue, I., 1992, Vasopressin modulates K+-channel activities of cultured smooth muscle cells from porcine coronary artery, Am. J. Physiol. 263:H491-H496.

    PubMed  CAS  Google Scholar 

  • Wellman, G. C., Bonev, A. D., Nelson, M. T., and Brayden, J. E., 1996, Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca2+-dependent K+ channels, Circ. Res. 79:1024-1030.

    Article  PubMed  CAS  Google Scholar 

  • Wellman, G. C., Quayle, J. M., and Standen, N. B., 1998, ATP-sensitive K+ channel activation by calcitonin-gene related peptide and protein kinase A in pig coronary arterial smooth muscle, J. Physiol. 507:117-129.

    Article  PubMed  CAS  Google Scholar 

  • Worley, J. F. III, Deitmer, J. W., and Nelson, M. T., 1986, Single nisoldipine-sensitive calcium channels in smooth muscle cells isolated from rabbit mesenteric artery, Proc. Natl. Acad. Sci. U.S.A. 83:5746-5750.

    Article  PubMed  CAS  Google Scholar 

  • Worley, J. F. III, Quayle, J. M., Standen, N. B., and Nelson, M. T., 1991, Regulation of single calcium channels in cerebral arteries by voltage, serotonin, and dihydropyridines, Am. J. Physiol. 261:H1951-H1960.

    PubMed  CAS  Google Scholar 

  • Xu, X., and Lee, K.S., 1994, Characterization of the ATP-inhibited K+ current in canine coronary smooth muscle cells, Pflügers Arch. 427:110-120.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J. F., and Tsien, R. W., 1993, Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels, Nature 366:158-161.

    Article  PubMed  CAS  Google Scholar 

  • Yatani, A., Bahinski, A., Mikala, G., Yamamoto, S., and Schwartz, A., 1994, Single amino acid substitutions within the ion permeation pathway alter single-channel conductance of the human L-type cardiac Ca2+ channel, Circ. Res. 75:315-323.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., and Bolton, T.B., 1995, Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery, Br. J. Pharmacol. 114:662-672.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gollasch, M. (2001). Potassium Channels in the Coronary Circulation. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics