Skip to main content

Potassium Channels in the Renal Circulation

  • Chapter
Potassium Channels in Cardiovascular Biology

Abstract

The renal artery and its main tributaries, the arcuate and interlobular arteries, are responsible for the vascular supply to the most richly perfused organ of the human body. Because the kidney establishes a large portion of total peripheral resistance, it is one of the essential vascular beds controlling blood pressure. While rapid adjustments in tone of the main renal arteries can significantly modulate acute blood pressure, the renal arterioles regulate blood pressure on a more long-term basis by modulating urinary excretion in response to changing blood volume (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso-Galicia, M., Sun, C.-W., Falck, J. R., Harder, D. R., and Roman, R. J., 1998, Contribution of 20-HETE to the vasodilator actions of nitric oxide in renal arteries. Am. J. Physiol 275:70–78.

    Google Scholar 

  • Barber, R. D., Woolf, A. S., and Henderson, R. M., 1997, Potassium conductances and proliferation in conditionally immortalized renal glomerular mesangial cells from the H-2K b-tsA58 transgenic mouse,Biochim. Biophys. Acta 1355:191–203.

    Article  PubMed  CAS  Google Scholar 

  • Breitwieser, G. E., 1996, Mechanisms of K+ channel regulation, J. Membr. Biol. 152:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, J. P., Steipe, B., Schubert, G., Schnermann, J., 1982, Micropuncture Studies of the renal effects of atrial natriuretic substances. Pflüger Arch. 395:271276.

    Google Scholar 

  • Carmines, P. K., Fowler, B. C., and Bell, P. D., 1993, Segmentally distinct effects of depolarization on intracellular [Ca2+] in renal arterioles, Am. J. Physiol. 265:F677–F685.

    PubMed  CAS  Google Scholar 

  • Carmines, P. K., Fallet, R. W., Bast, J. P., Ishii, N., Fujiwara, K., and Sansom, S. C., 1999, Impact of Ca2+-activated K+ channels on afferent arteriolar responses to depolarizing agonists, FASEB J. Vol. 13,A717.

    Google Scholar 

  • Carroll, M. A., Garcia, M. P., Falck, J. R., and McGiflf, J. C., 1992, Cyclooxygenase dependency of the renovascular actions of cytochrome P-450 derived arachidonic acid metabolites, J. Pharmacol. Exp.Ther. 260:104–109.

    PubMed  CAS  Google Scholar 

  • Chilton, L., and Loutzenhiser, R., 1998, Potassium-induced dilation of pre-glomerular arterioles: Evidence of the inward rectifier K channel (KIR) in the renal microcirculation, J. Am. Soc. Nephrol 9:336A (Abstract).

    Google Scholar 

  • England, S. K., Wooldridge, T. A., Stekiel, W. J., and Rusch, N. J., 1993, Enhanced single-channel K+ current in arterial membranes from genetically hypertensive rats, Am. J. Physiol. 264:H1337–H1345.

    PubMed  CAS  Google Scholar 

  • Gebremedhin, D., Kaldunski, M., Jacobs, E. R., Harder, D. R., and Roman, R. J., 1996, Coexistence of two types of Ca2+-activated K+ channels in rat renal arterioles. Am. J. Physiol. 270:F69–F81.

    PubMed  CAS  Google Scholar 

  • Gelband, C. H., and Hume, J. R., 1992, Ionic currents in single smooth muscle cells of the canine renal artery,Circ. Res. 71:745–758.

    Article  PubMed  CAS  Google Scholar 

  • Gelband, C. H., Ishikawa, T., Post, J. M., Keef, K. D., and Hume, J. R., 1993, Intracellular divalent cations block smooth muscle K+ channels, Circ. Res. 73:24–34.

    Article  PubMed  CAS  Google Scholar 

  • Gojkovic, L., and Kazic, T., 1994, A comparison of the relaxant effects of pinacidil in rabbit renal and mesenteric artery, Gen. Pharmacol. 25:1711–1717.

    Article  PubMed  CAS  Google Scholar 

  • Gordienko, D. V., Clausen, C., and Goligorsky, M. S., 1994, Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries, Am. J. Physiol. 266:25–41.

    Google Scholar 

  • Graray, R., Hannaert, P., Rodrigue, F., Dunham, B., Marche, P., Genest, J., Braquet, P., Bianchi, C., Cantin,M., and Meyer, P., 1985, Atrial natriuretic factor inhibits Ca-dependent K fluxes in cultured vascular smooth muscle, J. Hypertens. 3:S297–S298.

    Article  Google Scholar 

  • Hall, D., Carmines, P. K., and Sansom, S. C., 1998, Role of Ca2+/calmodulin-dependent protein kinase(CAMKII) in the angiotensin II (ANGII)-induced feedback activation of BKCa in human glomerular mesangial cells, J. Am. Soc. Nephrol 9:35A (Abstract).

    Google Scholar 

  • Harder, D. R., Campbell, W. B., and Roman, R. J., 1995, Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone, J. Vasc. Res. 32:79–92.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, K., Matsumura, Y., Yoshida, Y., Ohyama, T., Hisaki, K., Suzuki, Y., and Morimoto, S., 1990, Effects of BRL 34915 (cromakalim) on renal hemodynamics and function in anesthetized dogs, J. Pharmacol.Exp. Ther. 252:1240–1245.

    PubMed  CAS  Google Scholar 

  • Ikenaga, H., Bast, J. P., Fallet, R. W., and Carmines, P. K., 1996, Role of ATP-sensitive K+ channels in the renal afferent arteriolar dilation accompanying the early stage of IDDM in the rat, J. Am. Soc. Nephrol 7:1582 (Abstract).

    Google Scholar 

  • Ikenaga, H., Bast, J. P., Fallet, R. W., Carmines, P. K., 2000, Exaggerated impact of ATP-sensitive K+channels on afferent arteriolar diameter in diabetes mellitus. J. Am. Soc. Nephrol. 11(7):11991207.

    Google Scholar 

  • Keeler, R., and Azzarolo, A. M., 1983, Effects of atrial natriuretic factor on renal handling of water and electrolytes in rats, Can. J. Physiol. Pharmacol. 61:996–1002.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, J. N., Schnermann, J., Brosius, F. C., Briggs, J. P., and Furspan, P. B., 1992, Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit, J. Clin. Invest. 90:733–740.

    Article  PubMed  CAS  Google Scholar 

  • Loutzenhiser, R. D., and Parker, M. J., 1994, Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive K+ channels, Circ. Res. 74:861–869.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., Gebremedhin, D., Schwartzman, M. L., Falck, J. R., Clark, J. E., Masters, B. S., Harder, D. R., and Roman, R. J., 1993, 20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries, Circ. Res. 72:126–136.

    Article  PubMed  CAS  Google Scholar 

  • Martens, J. R., and Gelband, C. H., 1996, Alterations in rat interlobar artery membrane potential and K+channels in genetic and nongenetic hypertension, Circ. Res. 79:295–301.

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga, H., Yamashita, N., Miyajima, Y., Okuda, T., Chang, H., Ogata, E., and Kurokawa, K., 1991, Ion channel activities of cultured rat mesangial cells, Am. J. Physiol. 261:F808–F814.

    PubMed  CAS  Google Scholar 

  • Metzger, F., and Quast, U., 1999, Binding of 3H-P1075, an opener of ATP-sensitive K channels, to rat glomerular preparations, Naunyn-Schmiedeberg’s Arch. Pharmacol. 354:452–459.

    Article  Google Scholar 

  • Miura, K., Ebara, T., Okumura, M., Matsuura, T., Kim, S., Yukimura, T., and Iwao, H., 1995, Attenuation of adrenomedullin-induced renal vasodilatation by NG-nitro L-arginine but not glibenclamide, Br. J.Pharmacol. 115:917–924.

    Article  PubMed  CAS  Google Scholar 

  • Myers, B. D., Deen, W. M., and Brenner, B. M., 1975, Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat, Circ. Res.37:101–110.

    Article  PubMed  CAS  Google Scholar 

  • Navar, L. G., Inscho, E. W., Majid, D. S. A., Imig, J. D., Harrison-Bernard, L. M., and Mitchell, K. D., 1996,Paracrine regulation of the renal microcirculation, Physiol. Rev. 76:425–536.

    PubMed  CAS  Google Scholar 

  • Radermacher, J., Forstermann, K., and Frohlich, J. C., 1990, Endothelium-derived relaxing factor influences renal vascular resistance, Am. J. Physiol. 259:F9–F17.

    PubMed  CAS  Google Scholar 

  • Reslerova, M., and Loutzenhiser, R., 1995, Divergent mechanisms of ATP-sensitive K+ channel-induced vasodilation in renal afferent and efferent arterioles-evidence of L-type Ca2+ channel-dependent and-independent actions of pinacidil, Circ. Res. 77:1114–1120.

    Article  PubMed  CAS  Google Scholar 

  • Sansom, S. C., and Stockand, J. D., 1996, Physiological role of large, Ca-activated K channels in human glomerular mesangial cells. Clin. Exp. Pharmacol. Physiol. 23:76–82.

    Article  PubMed  CAS  Google Scholar 

  • Sansom, S. C., Stockand, J. D., Hall, D., and Williams, B., 1997, Regulation of large calcium-activated potassium channels by protein phosphatase 2A, J. Biol. Chem. 272:9902–9906.

    Article  PubMed  CAS  Google Scholar 

  • Sansom, S. C., Mehta, P., and Hall, D. A., 1999, Potentiating effects of hyper-omolality and epidermal growth factor on the release of arachidonic acid in human glomerular mesangial cells, Diabetes Res. Clin.Practice.

    Google Scholar 

  • Stockand, J. D. and Sansom, S. C., 1994, Large Ca2+-activated K+ channels responsive to angiotensin II in cultured human mesangial cells, Am. J. Physiol. 267:C1080–C1086.

    PubMed  CAS  Google Scholar 

  • Stockand, J. D., and Sansom, S. C., 1996a, Role of large, Ca-activated K channels in regulation by nitroprusside and ANP of mesangial contraction, Am. J. Physiol. 270:C1773–C1779.

    PubMed  CAS  Google Scholar 

  • Stockand, J. D., and Sansom, S. C., 1996b, Mechanism of activation by cGMP-dependent protein kinase of large Ca2+-activated K+ channels in mesangial cells, Am. J. Physiol. 271:C1669–C1677.

    PubMed  CAS  Google Scholar 

  • Stockand, J. D., and Sansom, S. C., 1998, Glomerular mesangial cells: Electrophysiology and regulation of contraction, Physiol. Rev. 78:723–744.

    PubMed  CAS  Google Scholar 

  • Stockand, J. D., Silverman, M., Hall, D., Derr, T., Kubacak, B., and Sansom, S. C., 1998, Arachidonic acid potentiates the feedback response of mesangial BKCa channels to angiotensin II, Am. J. Physiol.274:F658–F664.

    PubMed  CAS  Google Scholar 

  • Tamaki, T., Hasui, K., Shoji, T., Fukui, K., Iwao, H., and Abe, Y., 1991, Effects of cromakalim on renal hemodynamics and function in dogs: Comparison with nicardipine, J. Cardiovasc. Pharmacol 17:305–309.

    Article  PubMed  CAS  Google Scholar 

  • Toda, N., Nakajima, S., Miyazaki, M., and Ueda, M., 1985, Vasodilatation induced by pinacidil in dogs:Comparison with hydralazine and nifedipine, J. Cardiovasc. Pharmacol. 7:1118–1126.

    Article  PubMed  CAS  Google Scholar 

  • Videbaek, L. M., Aalkjaer, C., and Mulvany, M. J., 1988, Pinacidil opens K+-selective channels causing hyperpolarization and relaxation of noradrenaline contractions in rat mesenteric resistance vessels, Br.J. Pharmacol. 95:103–108.

    Article  PubMed  CAS  Google Scholar 

  • Williams, S. B., Cusco, J. A., Roddy, M. A., Johnstone, M. T., and Creager, M. A., 1996, Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus, J. Am. Coll.Cardiol. 27:567–574.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C, and Cooper, S. M., 1989, Effect of cromakalim on contractions in rabbit isolated renal artery in the presence and absence of extracellular Ca2+, Br. J. Pharmacol. 98:1303–1311.

    Article  PubMed  CAS  Google Scholar 

  • Yukimura, T., Yamashita, Y., Miura, K., Okumura, M., Yamanaka, S., and Yamamoto, K., 1992, Renal effects of the nitric oxide synthase inhibitor, L-NG-nitroarginine, in dogs. Am. J. Hypertens. 5:484–487.

    PubMed  CAS  Google Scholar 

  • Zou, A., Fleming, J. T., Falck, J. R., Jacobs, E. R., Gebremedhin, D., Harder, D. R., and Roman, R. J., 1996a,20-HETE is an endogenous inhibitor of the large-conductance Ca2+activated K+ channel in renal arteries, Am. J. Physiol. 270:R228–R237.

    PubMed  CAS  Google Scholar 

  • Zou, A. P., Fleming, J. T., Falck, J. R. Jacobs, E. R., Gebremedhin, D., Harder, D. R., and Roman, R. J.,1996b, Stereospeciflc effects of epoxyeicosatrienoic acids on renal vascular tone and K+-channel activity,Am. J. Physiol. 270:F822–F832.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stockand, J.D., Sansom, S.C. (2001). Potassium Channels in the Renal Circulation. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics