Skip to main content

Regulation of Cerebral Artery Diameter by Potassium Channels

  • Chapter
Potassium Channels in Cardiovascular Biology
  • 213 Accesses

Abstract

One remarkable feature of the cerebral circulation is the maintenance of near-constant blood flow to the brain, even under the most extreme circumstances. Diameter regulation of cerebral resistance arteries to ensure this constant flow of oxygen and other nutrients to the brain involves the integration of a multitude of neural, humoral, endothelial, metabolic, and physical factors. Further complexity in the study of cerebral artery regulation arises when one considers that although total cerebral blood flow (accounting for approximately 20% of the entire blood flow in adult humans) remains constant, blood flow patterns within the brain can shift dramatically with changing electrical activity patterns. Although the factors regulating cerebral arterial diameter are both diverse and complex in nature, most, if not all, of these vasoactive stimuli ultimately act to control the contractile state of cerebral vascular smooth muscle cells via changes in the global intracellular free Ca2+ concentrations ([Ca2+] i ) of these cells. These fluctuations in [Ca2+] i largely mirror membrane potential changes in these cells, due to changes in the open-state probablity of voltage-sensitive Ca2+ channels, the major Ca2+ influx pathway in this tissue (see Nelson et al., 1990 for a review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar-Bryan, L., Clement, J. P. Gonzalez, G., Kunjilwar, K. Babenko, A., and Bryan, J., 1998, Toward understanding the assembly and structure of KATP channels, Physiol. Rev. 78:227–245.

    PubMed  CAS  Google Scholar 

  • Aiello, E.A., M. P., Walsh, M. P., and Cole, W. C., 1995, Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells, Am. J. Physiol 268:H926–H934.

    PubMed  CAS  Google Scholar 

  • Babenko, A. P., Aguilar-Bryan, L., and Bryan, J., 1998, A view of sur/Kir6.X, KATP channels, Annu. Rev. Physiol. 60:667–687.

    Article  PubMed  CAS  Google Scholar 

  • Bonev, A. D., and Nelson, M. T., 1996, Vasoconstrictors inhibit ATP-sensitive K+ channels in arterial smooth muscle through protein kinase C, J. Gen. Physiol. 108:315–323.

    Article  PubMed  CAS  Google Scholar 

  • Bonev, A. D., Jaggar, J. H., Rubart, M., and Nelson, M. T., 1997, Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries, Am. J. Physiol. 273:C2090–C2095.

    PubMed  CAS  Google Scholar 

  • Bonnet, P., Rusch, N. J. and Harder, D. R., 1991, Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells, Pflügers Arch. 418:292–296.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, K. K., Jaggar, J. H., Bonev, A. D., Heppner, T. J., Flynn, E. R., Nelson, M. T., and Horowitz, B., 1999, Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells, J. Physiol. (London) 515:639–651.

    Article  CAS  Google Scholar 

  • Brayden, J. E. and Nelson, M. T., 1992, Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535.

    Article  PubMed  CAS  Google Scholar 

  • Brayden, J. E., and Wellman, G. C., 1989, Endothelium-dependent dilation of feline cerebral arteries: Role of membrane potential and cyclic nucleotides, J. Cereb. Blood Flow Metab. 9:256–263.

    Article  PubMed  CAS  Google Scholar 

  • Cole, W. C., Clement-Chomienne, O., and Aiello, E. A., 1996, Regulation of 4-aminopyridine-sensitive, delayed rectifier K+ channels in vascular smooth muscle by phosphorylation, Biochem. Cell Biol. 74:439–447.

    Article  PubMed  CAS  Google Scholar 

  • Dong, H., Waldron, G. J., Cole, W. C., and Triggle, C. R., 1998, Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery, Br. J. Pharmacol. 123:821–832.

    Article  PubMed  CAS  Google Scholar 

  • Doupnik, C. A., Dadidson, N., and Lester, H. A., 1995, The inward rectifier potassium channel family, Curr. Opin. Neurobiol. 5:268–277.

    Article  PubMed  CAS  Google Scholar 

  • Eckman, D. M., Wellman, G. C., Zaritsky , J. J., Schwarz, T. L., and Nelson, M. T., 1999, Expression of Kir 2.1 potassium channels is obligatory for strong inwardly rectifying K+ currents and K+-induced dilations in mouse cerebral arteries, FASEB J. 13:A98.

    Google Scholar 

  • Edwards, F. R., Hirst, G. D., and Silverberg, G. D., 1988, Inward rectification in rat cerebral arterioles; involvement of potassium ions in autoregulation, J. Physiol. (London) 404:455–466.

    CAS  Google Scholar 

  • Faraci, F. M., and Heistad, D. D., 1998, Regulation of the cerebral circulation: Role of endothelium and potassium channels, Physiol. Rev. 78:53–97.

    PubMed  CAS  Google Scholar 

  • Faraci, F. M., and Sobey, C. G., 1998, Role of potassium channels in regulation of cerebral vascular tone, J. Cereb. Blood Flow Metab. 18:1047–1063.

    Article  PubMed  CAS  Google Scholar 

  • Gollasch, M., Wellman, G. C., Knot, H. J., Jaggar, J. H., Damon, D. H., Bonev, A. D., and Nelson, M. T., 1998, Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events, Circ. Res. 83:1104–1114.

    Article  PubMed  CAS  Google Scholar 

  • Hirst, G. D., and Edwards, F. R., 1989, Sympathetic neuroeffector transmission in arteries and arterioles, Physiol. Rev. 69:546–604.

    PubMed  CAS  Google Scholar 

  • Jan, L. Y., and Jan, Y. N., 1997, Cloned potassium channels from eukaryotes and prokaryotes, Annu. Rev. Neurosci. 20:91–123.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, T. D., Marrelli, S. P., Steenberg, M. L., Childres, W. F., and Bryan, R. M. J., 1998, Inward rectifier potassium channels in the rat middle cerebral artery. Am. J. Physiol. 274:R541–R547.

    PubMed  CAS  Google Scholar 

  • Kleppisch, T., and Nelson, M. T., 1995, ATP-sensitive K+ currents in cerebral arterial smooth muscle: Pharmacological and hormonal modulation. Am. J. Physiol. 269:H1634–H1640.

    PubMed  CAS  Google Scholar 

  • Knot, H. J., and Nelson, M. T., 1995, Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am. J. Physiol. 269:H348–H355.

    PubMed  CAS  Google Scholar 

  • Knot, H. J., and Nelson, M. T., 1998a, Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure, J. Physiol. (London) 508:199–209.

    Article  CAS  Google Scholar 

  • Knot, H. J., Zimmermann, P. A., and Nelson, M. T., 1996, Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels, J. Physiol. (London) 492:419–430.

    CAS  Google Scholar 

  • Knot, H. J., Standen, N. B., and Nelson, M. T., 1998, Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels, J. Physiol. (London) 508:211–221.

    Article  CAS  Google Scholar 

  • Lincoln, T. M., Komalavilas, P., and Cornwell, T. L., 1994, Pleiotropic regulation of vascular smooth muscle tone by cyclic GMP- dependent protein kinase. Hypertension 23:1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., 1992, Regulation of arterial tone by potassium channels, Jpn. J. Pharmacol. 58 (Suppl. 2):238P–242P.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., and Quayle, J. M., 1995, Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268:C799–C822.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Patlak, J. B., Worley, J. F., and Standen, N. B., 1990, Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. 259:C3–C18.

    PubMed  CAS  Google Scholar 

  • Nelson, M. T., Cheng, H., Rubart, M., Santana, L. F., Bonev, A. D., Knot, H. J., and Lederer, W. J., 1995, Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, C. G., and Lopatin, A. N., 1997, Inward rectifier potassium channels, Annu. Rev. Physiol. 59:171–191.

    Article  PubMed  CAS  Google Scholar 

  • Paulson, O. B., and Newman, E. A., 1987, Does the release of potassium from astrocyte endfeet regulate cerebral blood flow?. Science 237:896–898.

    Article  PubMed  CAS  Google Scholar 

  • Perez, G. J., Bonev, A. D., Patlak, J. B., and Nelson, M. T., 1999, Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries, J. Gen. Physiol. 113:229–238.

    Article  PubMed  CAS  Google Scholar 

  • Porter, V. A., Bonev, A., Knot, H. J., Heppner, T. J., Stevenson, A. S., Kleppisch, T., Lederer, M. R., and Nelson, M. T., 1998, Freqency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am. J. Physiol. 274:C1346–C1355.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., McCarron, J. G., Brayden, J. E., and Nelson, M. T., 1993, Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries, Am. J. Physiol. 265:C1363–C1370.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., Bonev, A. D., Brayden, J. E., and Nelson, M. T., 1994, Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A, J. Physiol. (London) 475:9–13.

    CAS  Google Scholar 

  • Quayle, J. M., Bonev, A. D., Brayden, J. E., and Nelson, M. T., 1995, Pharmacology of ATP-sensitive K+ currents in smooth muscle cells from rabbit mesenteric artery, Am. J. Physiol. 269:C1112–C1118.

    PubMed  CAS  Google Scholar 

  • Quayle, J. M., Nelson, M. T., and Standen, N. B., 1997, ATP-sensitive and inwardly rectifying potassium channels in smooth muscle, Physiol. Rev. 77:1165–1232.

    PubMed  CAS  Google Scholar 

  • Robertson, B., 1997, The real life of voltage-gated K+ channels: More than model behaviour, Trends. Pharmacol. Sci. 18:474–483.

    PubMed  CAS  Google Scholar 

  • Robertson, B. E., and Nelson, M. T., 1994, Aminopyridine inhibition and voltage dependence of K+ currents in smooth muscle cells from cerebral arteries, Am. J. Physiol. 267:0589–0597.

    Google Scholar 

  • Robertson, B. E., Schubert, R., Hescheler, J., and Nelson, M. T., 1993, cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells, Am. J. Physiol. 265:C299–C303.

    PubMed  CAS  Google Scholar 

  • Somjen, G. G., 1979, Extracellular potassium in the mammalian central nervous system, Annu. Rev. Physiol. 41:159–177.

    Article  PubMed  CAS  Google Scholar 

  • Stryer L., 1995, Biochemistry. W. H. Freeman & Co., New York, pp. 325–360.

    Google Scholar 

  • Taguchi, H., Heistad, D. D., Kitazono, T., and Faraci, F. M., 1995, Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca2+-dependent K+ channels, Circ. Res. 76:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Vergara, C., Latorre, R., Marrion, N. V., and Adelman, J. P., 1998, Calcium-activated potassium channels, Curr. Opin. Neurobiol. 8:321–329.

    Article  PubMed  CAS  Google Scholar 

  • Wellman, G. C., and Quayle, J. M., 1997, ATP-sensitive potassium channels: Molecular structure and therapeutic potential in smooth muscle, ID Research Alert 2:75–83.

    Google Scholar 

  • Wellman, G. C., Quayle, J. M., and Standen, N. B., 1996, Evidence against the association of the sulphonylurea receptor with endogenous Kir family members other than KATP in coronary vascular smooth muscle, Pflügers Arch. 432:355–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wellman, G.C., Nelson, M.T. (2001). Regulation of Cerebral Artery Diameter by Potassium Channels. In: Archer, S.L., Rusch, N.J. (eds) Potassium Channels in Cardiovascular Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1303-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1303-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5487-1

  • Online ISBN: 978-1-4615-1303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics